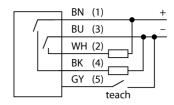


Sensor de campo magnético Con salida de conmutación Q7LMEB W/6

Protección cortocircuito

Pruebas/aprobaciones


Protección contra polaridad inversa	SÍ	
Retardo de la activación	≤ 0.5 s	
Tiempo de respuesta típica	< 20 ms	
Diseño	Rectangular, Q7LM	
Material de la cubierta	Aluminio, AL	
Conexión eléctrica	Cables, 2 m, PVC	
N° de conductores	5	
Sección transversal del conductor	0.5 mm²	
Temperatura ambiente	-40+70 °C	
Grado de protección	IP69K	
Indicación de la tensión de servicio	LED, Verde	
Indicación estado de conmutación	LED, Amarillo	

sí/ cíclica

- Diseño compacto y resistente en carcasa plana de aluminio en tubería termoencogi-
- Grados de protección IP67/IP69K
- Conexión de cable
- Voltaje de servicio de 10-30 V CC
- Salidas de conmutación, bipolar (PNP/ NPN)
- Rango de medición ajustable por medio de programación

Diagrama de cableado

Principio de funcionamiento

En este sensor se aplican tres transductores de resistencia magnéticos perpendiculares entre sí. Cada transductor detecta las modificaciones del campo magnético a lo largo de un eje. Mediante el uso de tres elementos de medición se consigue la máxima sensibilidad de los sensores. Un objeto férreo modifica el campo magnético local (campo magnético circundante) que rodea el objeto. El grado de modificación del campo magnético depende tanto del objeto mismo (tamaño, forma, orientación) como también del campo magnético circundante (fuerza y orientación). El sensor mide el campo magnético circundante mediante una sencilla programación. Si un objeto férreo modifica el campo magnético, el sensor lo detecta.