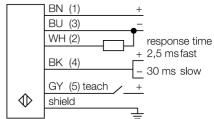


Photoelectric Sensor Triangulation Sensor with Analog Output Q50BUQ

Optical data	
Function	Proximity switch
Operating mode	Triangulation
Light type	IR
Wavelength	880 nm
Repeatability	1 mm
Range	100400 mm
Ambient light immunity	10,000 lux
Electrical data	
Operating voltage U _B	1530 VDC
No-load current I₀	≤ 70 mA
Type of analog output	010 V
Voltage output	010 V
Readiness delay	≤ 2 s

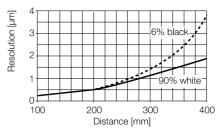
Q50BUQ

3063872


Mechanical data	
Design	Rectangular, Q50
Housing material	Plastic, ABS/Polycarbonate
Lens	plastic, Acrylic
Electrical connection	Connector, M12 × 1, PVC
Number of cores	5
Ambient temperature	-10+55 °C
Protection class	IP67
Tests/approvals	

≤ 2000 ms

< 4 ms


- Foreground and background suppression
- Operating range 100...400 mm
- M12 × 1 connector rotatable by 90°
- Operating voltage 15...30 VDC
- analog voltage output 0...10 V
- Selectable output response of 4 ms (fast) and 64 ms (slow)

Wiring Diagram

Functional principle

The function principle of the Q50 is based on optical triangulation. The emitter and the optics create a light source that is directed towards a target. The target reflects the light back to the receiver lens of the sensor, from where it then falls onto the position sensitive device (PSD). The target's distance from the receiver determines the angle at which the light meets the receiver element. The integrated microprocessor uses this angle to analyse the target position and to create a corresponding output signal.

Type

Readiness delay

Response time typical