

Industrielle Automation

excom[®] – REMOTE I/O

INTEGRATION
TURCK EXCOM® IN
EMERSON DELTA V
M-SERIE

Sense it! Connect it! Bus it! Solve it!

Industri<mark>elle</mark> Au<mark>tomation</mark>

Inhalt

1	Einführung	4
1.1	Über dieses Handbuch	4
1.2	Symbolerläuterung	4
1.3	Mitgeltende Unterlagen	4
2	Parameter und E/A-Mapping der excom®-Module	4
2.1	GSD-basierte Integration	4
2.2	Gateway GDP	6
2.3	DM80	9
2.4	DF20	12
2.5	DI40	20
2.6	DI80	21
2.7	DO40	23
2.8	DO80	25
2.9	Al40	26
2.10	Al41	29
2.11	Al43	
2.12	AO40	
2.13	AIH40	
2.14	AIH41	
2.15	AOH40	
2.16	TI40	
2.17	TI41	
2.18	DO60-R	48
3	Beispielintegration von excom® in DeltaV	50
4	Redundanzstrategien bei PROFIBUS-DP	60
5	Umkonfiguration im laufenden Betrieb (HCIR/CIR)	66
6	Diagnosen bei excom®	68
7	Fehlercodes bei excom®	70

1 Einführung

1.1 Über dieses Handbuch

Dieses Dokument soll dem Benutzer helfen, das excom®-Gateway und die zugehörigen E/A-Module im DeltaV-Leitsystem zu konfigurieren. Dabei setzen wir voraus, dass die excom®-Hardware richtig installiert wurde. Bei Fragen bezüglich der Anschlussdiagramme, des Gateways und/oder der Netzteil-Redundanz entnehmen Sie die Informationen bitte den entsprechenden excom®-Handbüchern. Die spezifische E/A-Modul-Anordnung sowie die PROFIBUS-Adressierung müssen dem Benutzer bekannt sein. Die PROFIBUS-GSD-Datei für das excom®-System muss ebenfalls verfügbar sein. Grundlage für dieses Dokument ist die Verwendung des DeltaV-Systems V12 und des TURCK excom®-Systems mit dem Gateway GDP IS/2.x.x

1.2 Symbolerläuterung

In diesem Handbuch wird folgendes Symbol verwendet:

HINWEIS

Unter HINWEIS finden Sie Tipps, Empfehlungen und wichtige Informationen. Die Hinweise erleichtern die Arbeit, enthalten Infos zu speziellen Handlungsschritten und helfen, Mehrarbeit durch falsches Vorgehen zu vermeiden

1.3 Mitgeltende Unterlagen

Internet (www.turck.com).

Ergänzend zu diesem Dokument finden Sie in der TURCK-Produktdatenbank folgende Unterlagen: excom® – Remote I/O für eigensichere Stromkreise, D301265 excom® – Remote I/O für nicht eigensichere Stromkreise, D301267 Alle gültigen nationalen und internationalen Bescheinigungen der TURCK-Geräte finden Sie im

2 Parameter und I/O-Mapping der excom[®] Module

2.1 GSD-basierte Integration

GSD-Dateien beschreiben den gesamten Konfigurationsumfang und die Kommunikationseigenschaften eines PROFIBUS-Teilnehmers. Eigenschaften wie Übertragungsgeschwindigkeiten, Zeitverhalten, Konfigurationsdaten, Parameter, Diagnosedaten usw. sind in der Datei durch Schlüsselwörter beschrieben. Die jeweilige Konfigurations-Software der Host-Systeme interpretiert die GSD-Dateien und stellt die Konfigurationsund Parameterdaten der Teilnehmer in der Regel in reiner Textform dar. Eine *excom*®-Station kann modulweise oder kanalweise parametriert werden.

Für die Integration des excom®-Systems im Leitsystem wird die GSD-Datei "T203FF9F.GS?" benötigt. Der letzte Buchstabe in der Dateinamenerweiterung "?" gibt die Landessprache der Datei wieder.

Name der GSD-Datei	Sprache
T203FF9F.GSD	Englisch
T203FF9F.GSG	Deutsch

Tabelle 1: Beispiel für mögliche GSD-Dateien des excom® Gateways GDP...

Industrielle Automation

			Datenvolumen		
Modul	Тур	Konfiguration	Eingangs- Daten	Ausgabe- Daten	
GDP	GDP	Standard-Gateway	-	-	
	GDP C	Standard-Gateway + zyklische Daten	1 Wort	1 Wort	
DM80	DM80	Bidirektionale DM80 ohne Status	1 Byte	1 Byte	
	DM80 S	Bidirektionale DM80 mit Status	2 Byte	1 Byte	
	DM80 8I	DM80 nur als Eingabemodul ohne Status	1 Byte	0 Byte	
	DM80S 8I	DM80 nur als Eingabemodul mit Status	2 Byte	0 Byte	
DO40	DO40	Digitales Ausgabemodul ohne Status	0 Byte	1 Byte	
DO80	DO80	Digitales Ausgabemodul ohne Status	0 Byte	1 Byte	
DI40	DI40	Digitales Eingabemodul mit Status	1 Byte	0 Byte	
DI80	DI80	Digitales Eingabemodul mit Status	1 Byte	0 Byte	
DF20	DF20 P	Zählermodul	8 Byte	2 Byte	
	DF20 F	Frequenzmodul	8 Byte	2 Byte	
AIH40	AIH40	Analoger Eingang (aktiv) ohne zyklische HART®-Daten	4 Wörter	-	
	AIH40 1H	Analoger Eingang (aktiv) mit 1 zyklischen HART® Variablen	6 Wörter	-	
	AIH40 4H	Analoger Eingang (aktiv) mit 4 zyklischen HART® Variablen	12 Wörter	-	
	AIH40 8H	Analoger Eingang (aktiv) mit 8 zyklischen HART® Variablen	20 Wörter	-	
AIH41	AIH41	Analoger Eingang (passiv) ohne zyklische HART® Daten	4 Wörter	-	
	AIH41 1H	Analoger Eingang (passiv) mit 1 zyklischen HART® Variablen	6 Wörter	-	
	AIH41 4H	Analoger Eingang (passiv) mit 4 zyklischen HART® Variablen	12 Wörter	-	
	AIH41 8H	Analoger Eingang (passiv) mit 8 zyklischen HART® Variablen	20 Wörter	-	
AOH40	AOH40	Analoger Ausgang ohne zyklische HART®-Daten	0 Wörter	-	
	AOH40 1H	Analoger Ausgang mit 1 zyklischen HART®-Variablen	2 Wörter	4 Wörter	
	AOH40 4H	Analoger Ausgang mit 4 zyklischen HART®-Variablen	8 Wörter	4 Wörter	
	AOH40 8H	Analoger Ausgang mit 8 zyklischen HART®-Variablen	16 Wörter	4 Wörter	
Al40	AI40	Analoger Eingang (aktiv/passiv) mit Status	4 Wörter	-	
Al41	Al41	Analoger Eingang (passiv) mit Status	4 Wörter	-	
Al43	Al43	Analoger Eingang für Widerstandsmessung (passiv) mit Status	4 Wörter	-	
AO40	AO40	Analoger Ausgang (aktiv)	4 Wörter	-	
TI40	TI40 R	Eingangsmodul für Widerstandselemente	4 Wörter	-	
	TI40 T	Eingangsmodul für Thermoelemente	4 Wörter	-	
TI41	TI41	Eingangsmodul für Widerstandselemente	4 Wörter	-	
DO60R	DO60R	Relaismodul	-	1 Byte	

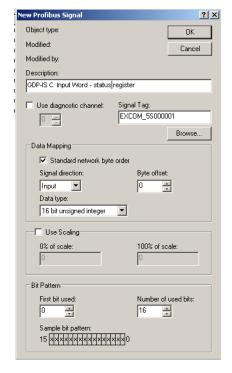
Tabelle 2: Konfiguration und Datenaufkommen

HINWEIS

Obwohl es Unterschiede bei der Konfiguration gibt, ist die Modulhardware identisch. Das Verhalten des Moduls wird nur durch den Hardwaremanager über die Steuerung bzw. über das Leitsystem beeinflusst.

2.2 Gateway GDP-...

Beim excom®-Gateway GDP... handelt es sich um ein eigensicheres Gateway für PROFIBUS-DPV1. Das Gateway übernimmt die Anbindung der excom®-Stationen an das übergeordnete Feldbussystem und wickelt den kompletten Datenverkehr ab. Das Gateway liefert außerdem den gesamten Diagnoseumfang bis hin zur kanalbezogenen Diagnose. Darüber hinaus werden zusätzlich herstellerspezifische Fehlercodes generiert. Hierunter fallen z. B. HART®-Kommunikationsfehler, Netzteilfehler, Projektierungsfehler sowie Informationen über Simulationen, interne Kommunikation, Redundanzumschaltung usw.


Die im Gateway gespeicherte Konfiguration und Parametrierung steht im Falle eines Ausfalls des PROFIBUS zur Verfügung. Wenn ein I/O-Modul ausgetauscht werden muss, so wird das neue Modul sofort parametriert. Es gibt drei verschiedene interne Zykluszeiten für die I/O-Module. Die digitalen I/O-Module werden alle 5 ms gescannt, Die Analogmodule werden alle 20 ms und die sekundären HART®-Variablen alle 80 ms gescannt. Unabhängig von der Anzahl der konfigurierten und gesteckten Module sind diese Abfrage-Zeiten konstant.

Das Gateway besitzt zwei wichtige Konfigurationen:

Variante	Beschreibung	Eingabe- daten	Ausgabe- daten
GDP	Kommunikationsinterface, PROFIBUS DPV1	-	-
GDP C	Kommunikationsinterface, PROFIBUS DPV1, mit zyklischen Daten	1 Wort	1 Wort

Tabelle 3: Konfiguration und zyklische Daten - GDP...

In der Konfiguration "GDP-...C" stellt das Gateway ein Eingabe- und ein Ausgabedatenwort bereit. Das Eingabedatenwort und das Ausgabedatenwort werden als Status- und Kontrollregister des Gateways genutzt. Diese Zustandsbeschreibungen werden genutzt, um z. B. bei einer Redundanzschaltung aktuell anzuzeigen, welches der beiden Gateways "aktiv" und welches "passiv" ist. Zusätzlich wird im Eingabewort auch der Status der Netzteile mitgeliefert.

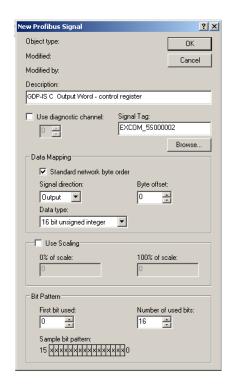


Abbildung 1: Beispieldefinition des GDP...

Industri<mark>elle Automation</mark>

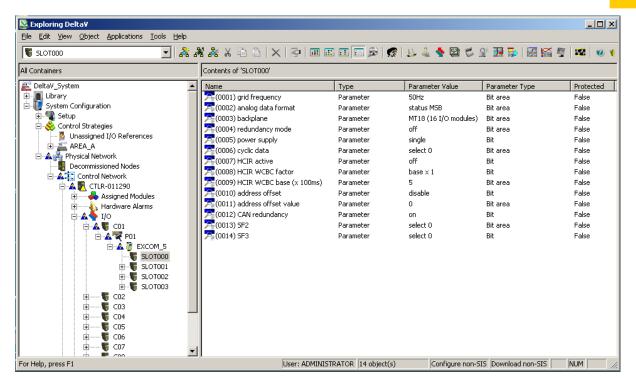


Abbildung 2: Parameter des GDP... – Slot 000

Die folgende Tabelle beschreibt alle verfügbaren Einstellungen des Gateways GDP.... Die Parametereinstellungen in **Fettdruck** sind die Standard-Einstellungen.

Parametername	Wert	Bedeutung
Modulträger	MT9 / MT18 / MT24	MT9 8 E/A-Module MT18 16 E/A-Module MT24 24 E/A-Module
Analogdaten- format	Status MSB	Der Kanalstatus aller analogen Eingangsmodule wird auf das MSB des Unsigned16-Wertes gemappt.
	Status LSB	Der Kanalstatus aller analogen Eingangsmodule wird auf das LSB des Unsigned16-Wertes gemappt.
	Kein Status	Der Kanalstatus aller analogen Eingangsmodule wird nicht im Unsigned16-Wert eingebunden.
Netzfrequenz	50 Hz / 60 Hz	Ein zusätzlicher Filter beseitigt den Einfluss der Netzfrequenz bei der A/D-Wandlung der analogen Eingangsmodule.
Redundanzmodus	Aus	Gateway ohne Redundanzfunktion
	Linienredundanz	Gateway und Netzwerk sind redundant. Das primäre Gateway kommuniziert mit der projektierten PROFIBUS-Adresse. Das sekundäre Gateway wird durch den Master gepollt mit der
	Modus 2	Reserviert
	System Redundanz	Gateway und Netzwerk sind redundant und kommunizieren mit zwei unabhängigen Mastern. Beide Gateways werden gleichermaßen unter der gleichen Adresse parametriert und

address offset	1124	Aktivierung des Adress Offsets bei Linienredundanz.
	(Vorgabewert: 0)	
Versorgungsmodul	einfach	Keine Netzteilredundanz.
	redundant	Netzteilredundanz.
HCIR aktiv	aus / ein	Freischaltung der Online-Konfiguration
		HINWEIS: Dieses Bit muss durch den Master gesetzt werden
		bevor die HCIR-Sequenz startet.
HCIR WCBC Faktor	Basis x 1 /	Faktor zur Generierung der maximalen Umschaltzeit zwischen
	Basis x16	alter und neuer Konfiguration.
		Die eingestellte Basis "HCIR WCBC Basis …" wird mit diesem
		Faktor multipliziert.
HCIR WCBC Basis	063	Legt die Basis der Umschaltzeit fest. Unterstützt der PROFIBUS-
(x 100 ms)	(Vorgabewert: 5)	Master HCIR wird dieser Parameter automatisch gesetzt.
Zyklische Daten	0	Der Vorgabewert dieses Parameters ist "0" und darf nicht
		verändert werden. Dieser Parameter in nur verfügbar für das
		Gateway GDP mit zyklischen Daten (GDP C).
	1	Für zukünftige Nutzung
	2	Für zukünftige Nutzung
	3	Für zukünftige Nutzung
CAN-Redundanz	ein / aus	Redundanz der internen Kommunikation zwischen Gateways
		und I/Os
SF2		Für zukünftige Nutzung
SF3		Für zukünftige Nutzung

Tabelle 4: Parametereinstellungen des GDP...

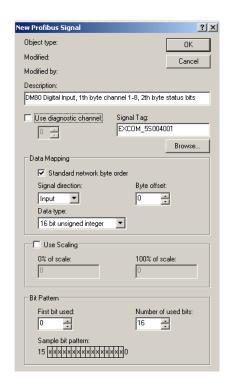
2.3 DM80...

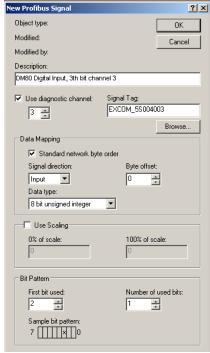
Das Ein-/Ausgangsmodul DM80... dient zum Anschluss von NAMUR-Sensoren (DIN EN 60947-5-6) und Aktuatoren. Werden mechanische Kontakte angeschlossen, ist bei aktivierter Drahtbruch- oder Kurzschlussüberwachung eine entsprechende Widerstandsbeschaltung (WM1, Ident-Nr. 0912101) vorzunehmen. Über den PROFIBUS-DP-Master wird das Verhalten der Ein-/Ausgänge parametriert. Mögliche Parameter sind Schaltverhalten, Eingangsverzögerung, Ersatzwertstrategie, Drahtbruchüberwachung und Kurzschluss-überwachung. Weiterhin kann vom Anwender bestimmt werden, ob an dem jeweiligen Anschlusspunkt ein Eingang oder ein Ausgang zur Verfügung steht. Konfigurationen von 8 Eingängen/0 Ausgängen, 6 Eingängen/2 Ausgängen bis hin zu 0 Eingängen/8 Ausgängen sind möglich (über GSD-Datei, Mode 2). Damit ist eine optimale Anpassung an die jeweilige Applikationsumgebung gewährleistet.

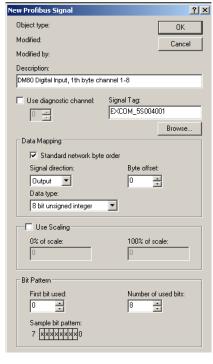
HINWEIS

Beim Anschluss der Feldgeräte muss berücksichtigt werden, dass alle Ein-/Ausgänge auf einem gemeinsamen Potenzial liegen.

Für das DM80... gibt es 4 unterschiedliche Möglichkeiten der Konfiguration in der GSD-Datei. Die nachfolgende Tabelle zeigt eine Übersicht der der verschieden unterstützenden Funktion des Moduls.


Variante	Beschreibung	Eingabedaten	Ausgabedaten
DM80	Jeweils zwei Kanäle können gruppenweise entweder als Eingang oder Ausgang parametriert werden. Es wird kein Status ausgegeben.	1 Byte	1 Byte
DM80 S	Jeweils zwei Kanäle können gruppenweise entweder als Eingang oder Ausgang parametriert werden. Es wird ein Status im zweiten Byte für jeden Eingangsund Ausgangskanal ausgegeben.	1 Signalbyte + 1 Statusbyte	1 Byte
DM80 8I	Alle 8 Kanäle werden fest als Eingänge parametriert. Es werden keine Ausgangsdaten ausgegeben.	1 Byte	-
DM80 S 8I	Alle 8 Kanäle werden fest als Eingänge parametriert. Es werden keine Ausgangsdaten ausgegeben. Es wird ein Status im zweiten Byte für jeden Eingangskanal ausgegeben.	1 Signalbyte + 1 Statusbyte	-


Tabelle 5: Konfiguration und Datenaufkommen


Datenbyte	Datenbyte (1. Eingangsbyte)							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Kanal 8	Kanal 7	Kanal 6	Kanal 5	Kanal 4	Kanal 3	Kanal 2	Kanal 1	
Statusbyte	Statusbyte (2. Datenbyte) optional, für DM80 S bzw. DM80 S 81							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Kanal 8	Kanal 7	Kanal 6	Kanal 5	Kanal 4	Kanal 3	Kanal 2	Kanal 1	

Ausgangs	byte						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Kanal 8	Kanal 7	Kanal 6	Kanal 5	Kanal 4	Kanal 3	Kanal 2	Kanal 1

Tabelle 6: Datenmapping des DM80...

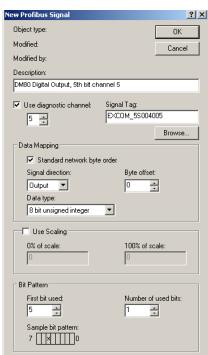


Abbildung 3: Beispieldefinition des DM80

Die Parametrierung des Moduls erfolgt immer für jeweils 2 Kanäle.

Parametername	Wert	Beschreibung
Kurzschlussüberw.	an / aus	Die Kurzschlussüberwachung wird kanalweise aktiviert oder deaktiviert. Im Kurzschlussfall leuchtet die zugehörige Kanal- LED rot. Eine Überwachung des Ausgangssignals ist nur bei Ansteuerung des Ausgangs möglich.
Drahtbruchüberw.	an / aus	Die Drahtbruchüberwachung wird kanalweise aktiviert oder deaktiviert. Im Fall eines Drahtbruchs leuchtet die zugehörige Kanal-LED rot. Eine Überwachung des Ausgangssignals ist nur bei Ansteuerung des Ausgangs möglich.
Ersatzwertstrategie	min. / max. / letzter gültiger Wert	Je nach Parametrierung wird pro Kanal der minimale, der maximale oder der zuletzt gültige Wert gesetzt.
Wirkrichtung	Eingang	Die Kanäle des Moduls sind gruppenweise als Eingänge (1/2, 3/4, 5/6, 7/8) geschaltet. Die Varianten DM80 S und DM80 S8l stellen einen Status zur Verfügung.
	Ausgang	Die Kanäle des Moduls sind gruppenweise als Ausgänge (1/2, 3/4, 5/6, 7/8) geschaltet. Es wird keine Statusinformation ausgegeben. Die Variante DM80 S stellt auch für die Ausgänge einen Status zur Verfügung.
Polarität	normal/ invertiert	Aktivieren oder Deaktivieren der Invertierung des Signals.
Entprellen	aus / 10 ms / 20 ms / 50 ms /	Zum Entprellen mechanischer Kontakte wird eine zusätzliche Dämpfung der Eingabesignale aktiviert.
Kanal 1	an / aus	Aktivierung bzw. Deaktivierung des Kanals 1. Wird ein Kanal nicht verwendet, kann er abgeschaltet werden.
	/	Kanal 2 bis Kanal 7 analog Kanal 1
Kanal 8	an / aus	Aktivierung bzw. Deaktivierung des Kanals 8. Wird ein Kanal nicht verwendet, kann er abgeschaltet werden.

Tabelle 7: Parameter DM80...

2.4 DF20...

Das DF20... ist ein excom[®]-Modul mit 2 Funktionsblöcken, die entweder Frequenzen bis 4 kHz messen oder aber Impulse zählen. Zwei unterschiedliche Konfigurationen in der GSD-Datei bzw. dem DTM kennzeichnen die Betriebsart, in der das Modul betrieben werden soll. **DF20... F** steht für die Konfiguration als Frequenzmodul und **DF20... P** für die Konfiguration als Impulszähler.

Im Folgenden werden die zwei Funktionsblöcke mit A und B bezeichnet. Die zugehörigen Signalleitungen werden mit A1...A4 und B1...B4 bezeichnet.

Variante	Beschreibung	Eingangs- byte	Ausgangs- byte
DF20 F	Die beiden Funktionsblöcke werden als Frequenzeingang konfiguriert. Ein Status wird für jeden Kanal im ersten Byte zur Verfügung gestellt.	8 Byte	2 Byte
DF20 P	Die beiden Funktionsblöcke werden als Zählereingang konfiguriert. Ein Status wird für jeden Kanal im ersten Byte zur Verfügung gestellt.	8 Byte	2 Byte

Tabelle 8: Konfiguration und Datenaufkommen

2.4.1 DF20...F

In dieser Konfiguration liefert das Modul je Funktionsblock ein Doppelwort mit Messwert und Status. Der Rohwert entspricht der Darstellung LONG INTEGER wobei die Auflösung pro Digit 0,1 mHz entspricht. Zur Umwandlung in Hz müssen die Statusbits maskiert werden und der in REAL gewandelte Rohwert ist durch 10.000 zu dividieren. Hieraus resultiert eine Festkommazahl mit 4 Nachkommastellen.

	Bit	7	6	5	4	3	2	1	0
Byte 1	Wertigkeit	2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴
B	Bedeutung	S	0	VZ			Messwert	t	
2	Bit	7	6	5	4	3	2	1	0
Byte 2	Wertigkeit	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
B	Bedeutung	Messwert							
3	Bit	7	6	5	4	3	2	1	0
Byte	Wertigkeit	2 ¹⁵	214	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
8	Bedeutung	Messwert							
4	Bit	7	6	5	4	3	2	1	0
Byte 4	Wertigkeit	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2º
B	Bedeutung				Mes	swert			

Tabelle 9: Datenmapping der DF20... F, Datentyp: Long INTEGER

S Messwertstatus

0 = gültiger Messwert

1 = ungültiger Messwert

VZ Vorzeichen

0 = Messwert positiv

1 = Messwert negativ

Industri<mark>elle Automation</mark>

Zusätzlich zum Messeingang steht ein Eingang zur Drehrichtungserkennung zur Verfügung. Je nach Parametrierung über das Hostsystem wird die Drehrichtungserkennung statisch oder dynamisch ausgewertet. Bei der statischen Auswertung des Eingangssignales bedeutet "logisch 0" Vorwärtslauf und "logisch 1" Rückwärtslauf. Bei der dynamischen Auswertung erfolgt die Drehrichtungserkennung über die Phasenlage zwischen Messeingang und dem Eingang zur Drehrichtungserkennung. Folgende Skizze zeigt das Prinzip:

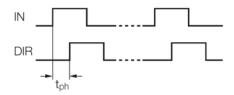


Abbildung 4: Dynamische Zählrichtungserkennung, IN voreilend

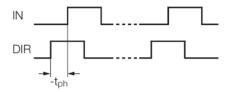
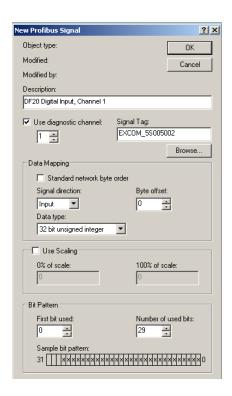


Abbildung 5: Dynamische Zählrichtungserkennung IN nacheilend


Ferner kann die Drehrichtungserkennung vom Hostsystem aus vorgegeben werden. Hierbei ist dann der Eingang "DIR" inaktiv. Das Steuerbyte des DF20... F ist wie folgt belegt:

Ausgangs	Ausgangsbyte 1 für Funktionsblock A							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
-	-	-	-	UP/ DOWN	-	-	-	
Ausgangs	Ausgangsbyte 2 für Funktionsblock B							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
-	-	-	-	UP/ DOWN	-	-	-	

Tabelle 10: Steuerbyte 1 und 2 des DF20... F

0 = positive Frequenz

1 = negative Frequenz

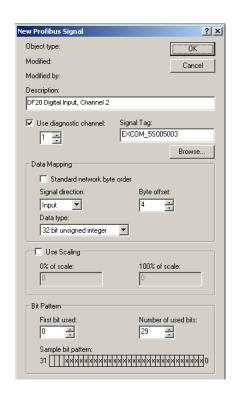


Abbildung 6: Beispieldefinition - DF20 Kanal 1 und 2

Parameter

Wie auch bei anderen *excom*[®]-Modulen ist im Mode 2 eine kanalbezogene (auf den Funktionsblock bezogene) Programmierung möglich. Da es sich hierbei nicht nur um physikalische Kanäle, sondern vornehmlich um Funktionsblöcke handelt, sind die 2 verfügbaren Funktionsblöcke mit A und B bezeichnet. Die zugehörigen physikalische Kanäle haben jeweils die Bezeichnung A1...A4 und B1...B4.

Parametername	Wert	Bedeutung
A1A4:	ein	Die Leitungsüberwachung wird aktiviert.
Leitungs-		
überwachung	aus	Die Leitungsüberwachung wird deaktiviert.
A: Ersatzwert	min. Wert	Der Eingabewert des entsprechenden Funktionsblocks nimmt den
Eingabe		Wert 0 an.
	max. Wert	Der Eingabewert des entsprechenden Funktionsblocks nimmt den
		Wert 1 an.
	Letzter gültiger	Der Eingabewert des entsprechenden Funktionsblocks verbleibt
	Wert	auf dem letzten gültigen Wert.
A: Ersatzwert	min. Wert	Der Ausgabewert des entsprechenden Funktionsblocks nimmt den
Ausgabe		Wert 0 an.
	max. Wert	Der Ausgabewert des entsprechenden Funktionsblocks nimmt den
		Wert 1 an.
	Letzter gültiger	Der Ausgabewert des entsprechenden Funktionsblocks bleibt auf
	Wert	dem letzten gültigen Wert.
A: Richtungs-	vorwärts	Richtungserkennung vorwärts
erkennung	(f < 4 kHz)	
	Host-gesteuert	Die Richtungserkennung wird durch das up/down-Steuerbit
	(f < 4 kHz)	gesetzt.
	Klemme	Die Richtungserkennung wird durch den Eingang der Richtungs-
	(f < 4 kHz)	erkennung von Kanal 3 und 4 gesteuert (statisch).
	Klemme	Die Richtungserkennung wird durch die Messeingänge von Kanal 3
	(auto, f < 1.25 kHz)	und 4 gesteuert (dynamisch).
Messzyklus	< 300 ms (0.1%	Bei einer Messfrequenz von 4 kHz beträgt der Messzyklus ungefähr
	Auflösung)	300 ms. Dabei beträgt die Genauigkeit 0.1 %
	< 50 ms (1 %	Bei einer Messfrequenz von 4 kHz beträgt der Messzyklus ungefähr
	Auflösung)	50 ms. Dabei beträgt die Genauigkeit 1 %
Entprellen	aus	Keine zusätzliche Bedämpfung des Eingangssignals
Steuereingänge	50 ms	50 ms Bedämpfung
Mittelwert	aus	Das Signal wird aus einem Abtastintervall abgeleitet.
	4 Werte	Anzahl der Abtastintervalle zur gleitenden Mittelwertbildung
	8 Werte	
	16 Werte	
Polarität	normal	Keine Invertierung der Signalrichtung
	invertiert	Invertierung der Signalrichtung

Tabelle 11: Parameter des DF20... F

Ersatzwerte und Gültigkeit der Messwerte

Im Gegensatz zu anderen *excom*[®]-Modulen werden beim DF20... nicht alle Signale direkt durchgereicht, sondern unterliegen einer internen Vorverarbeitung. In Folge dessen werden nicht die Ersatzwerte der Signale, sondern eine Ableitung aus der resultierenden Funktion als Ersatzwert ausgegeben. Wird z. B. die Ersatzwertstrategie "Letzter gültiger Wert" parametriert, so wird der Ersatzwert der Frequenz auf "Null" gesetzt, wenn Drahtbruch oder Kurzschluss am Frequenzeingang anliegen. Da die Störung zu einem beliebigen Zeitpunkt der Messung auftreten kann, wird dieser Ersatzwert gesetzt.

Folgende Ersatzwerte werden in Abhängigkeit von Störung und Parametrierung gebildet:

Fehler	Ersatzparameter des Eingangs	Ersatzwert
Drahtbruch oder Kurzschluss bei	Min. Wert	16# 80 00 00 00
A1A4 oder B1B4	Max. Wert	16# 9F FF FF FF
	Letzter gültiger Wert	16# 80 00 00 00
Modul gezogen	Min. Wert	16# 80 00 00 00
	Max. Wert	16# 9F FF FF FF
	Letzter gültiger Wert	16# 8x xx xx xx

Tabelle 12: Ersatzwerte

Ersatzwerte der Ausgabe beziehen sich lediglich auf die Ausgabe der Drehrichtungserkennung für den Fall, dass der Parameterwert "Host gesteuert (f < 4 kHz)" eingestellt ist. Der Ausgang nimmt dann den eingestellten Ersatzwert an.

Die vom dem DF20... F ausgehenden kanalspezifischen Fehlercodes der Diagnose gemäß EN 50170 ist in folgender Tabelle zusammengefasst

HINWEIS

Die zur kanalspezifischen Diagnose mitgelieferte Kanalnummer entspricht der LED-Nummer in der Frontkappe und nicht der sonst üblichen Zuordnung über die Kontaktbelegung.

LED	Bedeutung	
1	Zähleingang	
	Funktionsblock A	ļ
2	Zählrichtung (E/A)	
	Funktionsblock A	ļ
3	Zählersteuerung (E/A)	
	Funktionsblock A	
4	Reset (E/A)	
	Funktionsblock A	ļ
5	Zähleingang	
	Funktionsblock B	ļ
6	Zählrichtung (E/A)	
	Funktionsblock B	
7	Zählersteuerung (E/A)	
	Funktionsblock B	
8	Reset (E/A)	
	Funktionsblock B	

Tabelle 13: kanalspezifische Fehlercodes der Diagnose gemäß EN 50170

2.4.2 DF20 ... P

In dieser Konfiguration liefert das Modul je Funktionsblock ein Doppelwort mit Zählerstand und Status. Der Rohwert entspricht der folgenden Darstellung

	Bit	7	6	5	4	3	2	1	0
e 0	Wertigkeit	2 ³¹	2 ³⁰	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴
Byte 0	Bedeutung	S	OV	VZ	Zählerst	and			
	Bit	7	6	5	4	3	2	1	0
<u>-</u>	Wertigkeit	2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	218	217	2 ¹⁶
Byte 1	Bedeutung	Zählers	tand	•					
	Bit	7	6	5	4	3	2	1	0
e 2	Wertigkeit	2 ¹⁵	214	2 ¹³	212	211	210	2 ⁹	28
Byte 2	Bedeutung	Zählerstand							
	Bit	7	6	5	4	3	2	1	0
e B	Wertigkeit	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
Byte 3	Bedeutung	Zählers	tand	•	•	•	•		

Tabelle 14: Datenmapping des DF20... F, Datentyp Long INTEGER

Rohwertdarstellung des DF20... F für Funktionsblock A. Gleiches gilt für Funktionsblock B in Byte 4...7.

S Messwertstatus

0 = gültiger Messwert

1 = ungültiger Messwert

OV = Überlaufbit

0 = Kein Überlauf

1 = Überlauf

VZ Vorzeichen

0 = Messwert positiv

1 = Messwert negativ

Zusätzlich zum Messeingang steht ein Eingang zur Zählrichtungserkennung zur Verfügung. Je nach Parametrierung über das Hostsystem wird die Zählrichtungserkennung statisch oder dynamisch ausgewertet. Bei der statischen Auswertung des Eingangssignales bedeutet "logisch 0" Aufwärtszählung und "logisch 1" Abwärtszählung. Bei der dynamischen Auswertung erfolgt die Zählrichtungserkennung über die Phasenlage zwischen Messeingang und dem Eingang zur Zählrichtungserkennung.

Folgende Skizze zeigt das Prinzip:

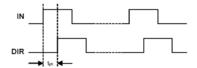


Abbildung 7: Dynamische Zählrichtungserkennung, IN voreilend

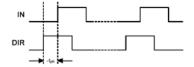


Abbildung 8: Dynamische Zählrichtungserkennung IN nacheilend

Ferner kann die Zählrichtung vom Hostsystem aus vorgegeben werden. Hierbei ist dann der Eingang "DIR" inaktiv. Das Steuerbyte des DF20... P ist wie folgt belegt:

	Byte 1 für Funktionsblock A						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	UP/ DOWN	RST OV	MRS	RST
	Byte 2 für Funktionsblock B						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	UP/ DOWN	RST OV	MRS	RST

Tabelle 15: Steuerbyte 1 und 2 des DF20... P

UP/DOWN Zählrichtung

0 = Aufwärts 1 = Abwärts

RST OV Rücksetzen des Überlaufbits OV

0 = Überlaufbit freigegeben

1 = Überlaufbit wird zurückgesetzt

MRS Bei Hoststeuerung wird hierüber der Zähler freigeschaltet

0 = Zähler gesperrt1 = Zähler freigegeben

RST Zählerreset

0 = Zähler freigegeben

1 = Zähler zurückgesetzt und gesperrt

Parameter

Wie auch bei anderen excom[®]-Modulen ist eine kanalbezogene Programmierung möglich. Da es sich hierbei nicht um physikalische Kanäle handelt, sondern vornehmlich um Funktionsblöcke, sind die 2 verfügbaren Funktionsblöcke mit A und B bezeichnet. Die zugehörigen physikalische Kanäle haben jeweils die Bezeichnung A1...A4 und B1...B4.

Parametername	Wert	Bedeutung
A1A4:	an	Drahtbruch-/Kurzschlussüberwachung auf
B1B4:		allen 8 Kanälen aktiv
Leitungsüberw.	aus	Drahtbruch-/Kurzschlussüberwachung auf
		allen 8 Kanälen inaktiv
A/B:	min. Wert	Der Eingabewert des entsprechenden
Ersatzwert Eingabe		Funktionsblocks nimmt den Wert 0 an.
	max. Wert	Der Eingabewert des entsprechenden
		Funktionsblocks nimmt den Wert 1 an.
	Letzer gültiger Wert	Der Eingabewert des entsprechenden
		Funktionsblocks hält den letzten gültigen
		Wert 1.
A/B:	min. Wert	Der Ausgabewert des entsprechenden
Ersatzwert Ausgabe		Funktionsblocks nimmt den Wert 0 an.
	max. Wert	Der Ausgabewert des entsprechenden
		Funktionsblocks nimmt den Wert 1 an.
	Letzer gültiger Wert	Der Ausgabewert des entsprechenden
		Funktionsblocks hält den letzt gültigen Wert 1.
A/B:	Vorwärts (f < 4 kHz)	Zählrichtungserkennung fest auf "vorwärts"
Zählrichtungserkennung		eingestellt
	Host gesteuert	Zählrichtungserkennung wird über das
	(f < 4 kHz)	Steuerbit UP/DOWN auf vorwärts/rückwärts
		eingestellt
	Klemme	Zählrichtung wird über den Richtungseingang
	(f < 4 kHz)	erkannt (statische Auswertung)
	Klemme	Zählrichtung wird über den Richtungseingang
	(auto, f < 1,25 kHz)	erkannt (dynamische Auswertung)
A/B:	Host gesteuert	RST-bit
Zähler rücksetzen	Klemme	RST Eingang
A/B:	aus	keine zusätzliche Dämpfung der Eingabe
Entprellen der		Signale
Steuereingänge	50 ms	50 ms Dämpfung
A/B:	steigend	nur steigende Flanken werden gezählt
Flankenzählung	steigend + fallend	Steigende und fallende Flanken werden
		gezählt
A/B:	Host gesteuert	Zählerfreigabe über MRS-Bit
Torzeit	Klemme	Zählerfreigabe über MRS-Eingang
A/B:	0100 Hz	Für zukünftige Funktionserweiterung im
Messbereich	01 kHz	Modul
	04 kHz	
A1A4: B1B4:	normal	Keine Wirkrichtungsumkehr des Signals
Polarität	Invertiert	Wirkrichtungsumkehr des Signals

Tabelle 16: Parameter des DF20... P

2.5 DI40...

Das DI40... ist ein 4-kanaliges, digitales Eingangsmodul für den Anschluss von NAMUR-Sensoren (DIN EN 60947-5-6) oder mechanischen Kontakten. Werden mechanische Kontakte angeschlossen, ist bei aktivierter Drahtbruch- oder Kurzschlussüberwachung eine entsprechende Widerstandsbeschaltung (WM1, Ident-Nr. 0912101) vorzunehmen.

HINWEIS

Alle Kanäle sind untereinander galvanisch getrennt.

Das DI40... hat folgende Konfiguration:

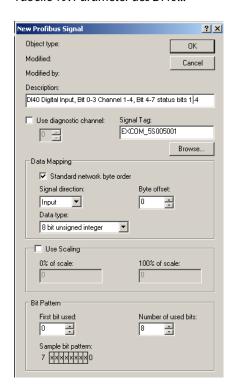
Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
DI40	Digitaler Eingang, 4 Kanäle, NAMUR-Sensoren, mit Status	1 Byte	-

Tabelle 17: Konfiguration und Datenaufkommen des DI40...

Das Eingangsmodul DI40... arbeitet als reine Eingabekarte mit zusätzlichem Statusbit für jeden Kanal. Bei Anstehen einer Statusmeldung wird das Statusbit des entsprechenden Kanals im Eingangsbyte (Bit 5... Bit 8) auf "1" gesetzt. Mögliche Ursachen für das Setzen des Bits sind Kurzschluss oder Drahtbruchmeldung.

Datenbyte							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status Kanal 4	Status Kanal 3	Status Kanal 2	Status Kanal 1	Kanal 4	Kanal 3	Kanal 2	Kanal 1

Tabelle 18: Datenmapping des DI40...


Die Parametrierung wird kanalweise durchgeführt.

Parametername	Wert	Beschreibung
Kurzschlussüberw.	an aus	Die Kurzschlussüberwachung wird kanalweise aktiviert oder deaktiviert. Im Kurzschlussfall leuchtet die zugehörige Kanal- LED rot. Die Überwachung ist nur möglich, wenn das Ausgangssignal "high" ist.
Drahtbruchüberw.	an aus	Die Drahtbruchüberwachung wird kanalweise aktiviert oder deaktiviert. Im Fall eines Drahtbruchs leuchtet die zugehörige Kanal-LED rot. Die Überwachung ist nur möglich, wenn das Ausgangssignal "high" ist.
Ersatzwertstrategie	Min. wert max. Wert letzter gültiger Wert	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt.
Polarität	normal invertiert	Aktivieren oder Deaktivieren der Invertierung des Eingangsignals

Parametername	Wert	Beschreibung
Entprellen	aus 10 ms 20 ms 50 ms	Zum Entprellen mechanischer Kontakte wird eine zusätzliche Dämpfung der Eingabesignale aktiviert.

Tabelle 19: Parameter des DI40...

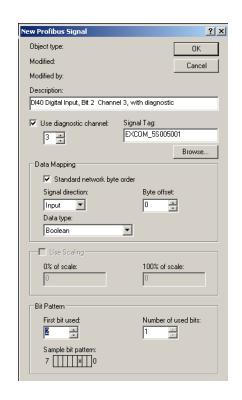


Abbildung 9: Beispieldefinition des DI40

2.6 DI80...

Das digitale Eingangsmodul DI80... dient zum Anschluss von acht 3-Draht-PNP/NPN-Sensoren (IEC 61131, Type 3). Die Sensorik wird nicht über das Modul gespeist, sondern verpolgeschützt über eine Hilfsenergie, die getrennt für die Kanäle 1...4 (Gruppe 1) und 5...8 extern (Gruppe 2) über die Anschlussklemmen zugeführt wird. Die Flatterüberwachung erkennt und meldet prozesstechnisch ungewöhnliche Signalverläufe, z. B. ein zu häufiges Schwanken des Eingangssignals zwischen "0" und "1". Das Auftreten solcher Signalverläufe ist ein Anzeichen für fehlerhafte Geber bzw. prozesstechnische Instabilitäten.

Das DI80... hat folgende Konfiguration:

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
DI80	Digitaler Eingang, 8 Kanäle, 3-Draht-PNP/NPN-Sensoren, mit Status	1 Byte	-

Tabelle 20: Konfiguration und Datenaufkommen

Datenbyte									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Kanal 8	Kanal 7	Kanal 6	Kanal 5	Kanal 4	Kanal 3	Kanal 2	Kanal 1		
Status Kanal 8	Status Kanal 7	Status Kanal 6	Status Kanal 5	Status Kanal 4	Status Kanal 3	Status Kanal 2	Status Kanal 1		

Tabelle 21: Datenmapping des DI80...

Parametername	Wert	Beschreibung
Kurzschlussüberw.	an aus	Aktivieren oder Deaktivieren der kanalweisen Kurzschlussüberwachung. Im Kurzschlussfall leuchtet die zugehörige Kanal-LED rot. Eine Überwachung des Ausgangssignals ist nur bei Ansteuerung des Ausgangs möglich.
Drahtbruchüberw.	an aus	Aktivieren oder Deaktivieren der kanalweisen Drahtbruchüberwachung. Im Fall eines Drahtbruchs leuchtet die zugehörige Kanal-LED rot.
Ersatzwertstrategie	min. Wert max. Wert letzter gültiger Wert	Als Ersatzwert wird je nach Parametrierung pro Kanal der minimale, der maximale oder der zuletzt gültige Wert gesetzt.
Polarität	normal invertiert	Aktivieren oder Deaktivieren der Invertierung des Eingangsignals
Stromflussrichtung	PNP NPN	Auswahl des Sensortyps (entweder PNP oder NPN)
Flatterüberwachung	aus 10 ms 20 ms 50 ms	Aktivieren der zusätzlichen Flatterüberwachung der Eingabesignale zur Vermeidung eines Diagnoseschwalls bei Wackelkontakten.
Flatterzeitfenster	aus 0,5 s 1 s 2 s	Innerhalb des gewählten Überwachungszeitfensters wird ein Flatterfehler erkannt.
Anzahl Signalwechsel	2 4 8 16	Anzahl der Signalwechsel innerhalb des Überwachungszeitfensters zur Erkennung eines Flatterfehlers

Tabelle 22: Parameter des DI80...

2.7 DO40...

Das Ausgangsmodul DO40... dient zum Anschluss von eigensicheren Aktuatoren wie Ventilen oder Anzeigeelementen. Je Kanal kann ein Aktuator angeschlossen werden. Durch Wahl des Anschlusses stehen jedem Kanal zwei eigensichere Kreise mit unterschiedlichen Ansteuerdaten zur Verfügung.

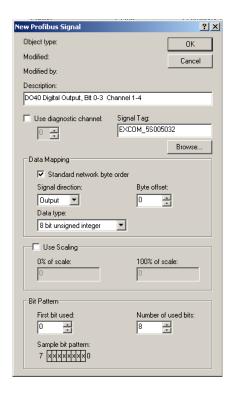
Die Werte für die Ventilansteuerung entnehmen Sie der Lastkurve. Die zulässigen Grenzwerte entnehmen Sie der Bescheinigung des Ventilherstellers. Folgende Varianten sind z. B. möglich:

- 24 V/6 mA
- 18 V/25 mA
- 15 V/35 mA
- 12 V/45 mA

HINWEIS

Alle Kanäle sind untereinander galvanisch getrennt.

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
DO40	Digitaler Ausgang, 4 Kanäle, Ventile, Kein Kanalstatus	-	1 Byte


Tabelle 23: Konfiguration und Datenaufkommen des DO40...

Datenbyte									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
-	-	-	-	Kanal 4	Kanal 3	Kanal 2	Kanal 1		

Tabelle 24: Datenmapping des DO40...

Parametername	Wert	Beschreibung
Kurzschlussüberw.	an / aus	Die Kurzschlussüberwachung wird kanalweise aktiviert oder deaktiviert. Im Kurzschlussfall leuchtet die zugehörige Kanal-LED rot. Die Überwachung ist nur möglich, wenn das Ausgangssignal "high" ist.
Drahtbruchüberw.	an / aus	Die Drahtbruchüberwachung wird kanalweise aktiviert oder deaktiviert. Im Fall eines Drahtbruchs leuchtet die zugehörige Kanal-LED rot. Die Überwachung ist nur möglich, wenn das Ausgangssignal "high" ist.
Ersatzwertstrategie	min. Wert / max. Wert / letzter gültiger Wert	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt.
Polarität	normal / invertiert	Aktivieren oder Deaktivieren der Invertierung des Signals

Tabelle 25: Parameter des DO40...

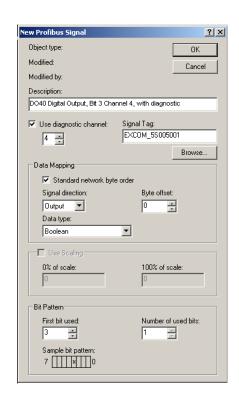


Abbildung 10: Beispieldefinition des DO40...

2.8 DO80...

Das digitale Ausgangsmodul DO80... dient zum Anschluss von acht 24 VDC-Aktuatoren wie Ventile oder Anzeigeelemente mit jeweils 0,5 A. Die Aktuatorik wird nicht über das Modul gespeist, sondern verpolgeschützt über eine Hilfsenergie, die getrennt für die Kanäle 1...4 (Gruppe 1) und 5...8 (Gruppe 2) extern über die Anschlussklemmen zugeführt wird. Zur Erhöhung der Last ist das Parallelschalten der Ausgänge innerhalb einer Gruppe möglich.

Über den PROFIBUS-DP-Master wird das Verhalten der Ausgänge parametriert. Mögliche Parameter sind Eingangsverzögerung, Ersatzwertstrategie, Drahtbruchüberwachung, Kurzschlussüberwachung und Kurzschlussverhalten.

Beim Kurzschlussverhalten lassen sich die Ausgänge auf einrastenden oder taktenden Kurzschlussschutz parametrieren.

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
DO80	Digitaler Ausgang, 8 Kanäle, Ventile, Kein Kanalstatus	-	1 Byte

Tabelle 26: Konfiguration und Datenaufkommen des DO80...

Datenbyte									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Kanal 8	Kanal 7	Kanal 6	Kanal 5	Kanal 4	Kanal 3	Kanal 2	Kanal 1		

Tabelle 27: Datenmapping des DO80...

Parametername	Wert	Beschreibung
Kurzschlussüberw.	an / aus	Die Kurzschlussüberwachung wird kanalweise aktiviert oder deaktiviert. Im Kurzschlussfall leuchtet die zugehörige Kanal-LED rot. Die Überwachung ist nur möglich, wenn das Ausgangssignal "high" ist.
Drahtbruchüberw.	an / aus	Die Drahtbruchüberwachung wird kanalweise aktiviert oder deaktiviert. Im Fall eines Drahtbruchs leuchtet die zugehörige Kanal-LED rot. Die Überwachung ist nur möglich, wenn das Ausgangssignal "high" ist.
Ersatzwertstrategie	min. Wert / max. Wert / letzter gültiger Wert	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt.
Polarität	normal / invertiert	Aktivieren oder Deaktivieren der Invertierung des Signals
Kurzschlussstrom	taktend einrastend	Das Kurzschlussverhalten kann auf taktend oder einrastend parametriert werden.

Tabelle 87: Parameter des DO80...

2.9 Al40...

Das Eingangsmodul Al40... dient zum Anschluss von 2-Leiter-Messumformern (aktiver Eingang = speisend / Geber passiv) oder von 4-Leiter-Messumformern (passiver Eingang = nicht speisend / Geber aktiv).

Die Einstellung der Parameter wie z. B. Drahtbruchüberwachung, Kurzschlussüberwachung, Ersatzwertstrategie usw. wird kanalweise durchgeführt und ausschließlich vom Master initiiert.

Die Auflösung entspricht 14 Bit, d. h. der analoge Wert von 0...21 mA wird als Zahl zwischen 0 und 16383 digitalisiert. Zur einfacheren Darstellung wird der digitalisierte Wert auf 0...21000 gespreizt und zum Hostsystem übertragen.

2.9.1 HART®-Fähigkeit

An das Modul können HART®-fähige Aktuatoren angeschlossen werden. Dadurch kann die Parametrierung mit einem zugelassenen Modem direkt an der Anschlussebene auf dem Modulträger erfolgen.

HART®-Fähigkeit bedeutet beim Al40: es ist möglich, sich direkt an den Klemmen des Transmitters mit einem FSK-Modem anzuschließen. (Die entsprechende Bürde ist im Modul invertiert.)

Das Al40... verfügt über folgende Konfiguration:

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
AI40	Analoger Eingang, 4 Kanäle, 0/421 mA, aktiv	4 Wörter	-

Tabelle 29: Konfiguration und Datenaufkommen des Al40...

2.9.2 Konfiguration und Datenaufkommen

Das Modul Al40... arbeitet als reine Eingangskarte mit zusätzlichem Statusbit für jeden Kanal. Bei einem Anstehen einer Statusmeldung wird das Statusbit des entsprechenden Kanals im Eingangswort (je nach Darstellung Bit 16 oder Bit 1) auf "1" gesetzt. Das Statusbit wird gesetzt, wenn ein Fehler auftritt, der eine Diagnosemeldung auslöst.

Der analoge Wert von 0...21 mA wird als Zahl auf 15 Bit mit 1 μ A/Digit umgerechnet und zum Host-System übertragen. Je nach Wahl des Gateway-Parameters wird das Statusbit linksbündig, rechtsbündig oder gar nicht in die Prozessdaten eingegliedert.

	Datenw	Datenwörter														
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MSB	Status	Bitpo	Bitposition des Messwertes (021000 entspricht 0 bis 21 mA)													
LSB	Bitposition des Messwertes (021000 entspricht 0 bis 21 mA)								Status							
Kein Status	-	Bitpo	osition	des M	esswei	tes (0.	2100	0 ents	oricht	0 bis 2	1 mA)					

Tabelle 30: Datenmapping des Al40...

Wort	Bedeutung
1	Prozesswert Kanal 1: 0/4 – 20 mA in μA
2	Prozesswert Kanal 2: 0/4 – 20 mA in μA
3	Prozesswert Kanal 3: 0/4 – 20 mA in μA
4	Prozesswert Kanal 4: 0/4 – 20 mA in μA

Tabelle 31: Datenmapping

Parametername	Wert	Beschreibung
Messbereich	020 mA	Der Messbereich ist auf 020 mA eingestellt. Diagnose auf Messbereichsunterschreitung ist nicht möglich.
	420 mA	Der Messbereich ist auf 4…20 mA eingestellt. Diagnose auf Messbereichsunterschreitung und -überschreitung gemäß NAMUR-Norm
Filter (PT1)	Off29,2 s	Aktivierung eines Softwarefilters zur Erzeugung eines Mittelwerts
Kurzschlussueberw.	an / aus	Die Kurzschlussüberwachung wird kanalweise aktiviert oder deaktiviert. Im Kurzschlussfall leuchtet die zugehörige Kanal- LED rot.
Drahtbruchueberw.	an / aus	Die Drahtbruchüberwachung wird kanalweise aktiviert oder deaktiviert. Im Fall eines Drahtbruchs leuchtet die zugehörige Kanal-LED rot.
Ersatzwertstrategie	Min. Wert / Max. Wert / Letzter gültiger Wert	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt. Der max. Wert beträgt 21 mA. Der min. Wert hängt von dem gewählten Bereich ab, bei 020 mA ist dieser 0 mA; bei 420 mA ist dieser 3,6 mA.
Anschluss	aktiv / passiv	Mit diesem Parameter muss die Art der Geberversorgung eingestellt werden. Der Parameter muss aktiv sein, wenn die Geberversorgung über die Eingangsklemme der excom®- Station vorgenommen wird. Der Parameter muss passiv sein, wenn die Geberversorgung extern vorgenommen wird.

Tabelle 32: Parameter des Al40...

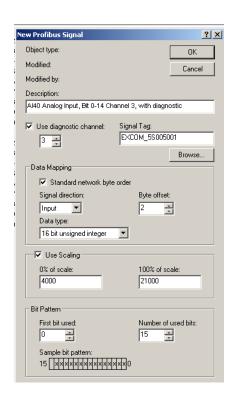


Abbildung 11: Beispieldefinition des Al40...

2.10 Al41...

Das Eingangsmodul Al41... dient zum Anschluss von 4-Leiter-Messumformern (passiver Eingang = nicht speisend / Geber aktiv). Alle vier Kanäle verfügen über jeweils einen Stromeingang für 0 bis 21mA und einen Spannungseingang für 0 bis 10 V. Der Anschluss der Peripherie kann wahlweise durchgeführt werden.

Die Einstellung der Parameter wie z. B. Drahtbruchüberwachung, Kurzschlussüberwachung, Ersatzwertstrategie usw. wird kanalweise durchgeführt und wird ausschließlich vom Master initiiert. Die Auflösung entspricht 14 Bit, d. h. der analoge Wert von 0...21 mA wird als Zahl zwischen 0 und 16383 digitalisiert. Zur einfacheren Darstellung wird der digitalisierte Wert auf 0...21000 gespreizt und zum Hostsystem übertragen. Der Wert von 0...10 V wird als digitaler Wert 0...10000 übertragen.

2.10.1 HART®-Fähigkeit

An das Modul können HART®-fähige Aktuatoren angeschlossen werden. Dadurch kann die Parametrierung mit einem zugelassenen Modem direkt an der Anschlussebene auf dem Modulträger erfolgen. HART®-Fähigkeit bedeutet beim Al41...: es ist möglich, sich direkt an den Klemmen des Transmitters mit einem FSK-Modem anzuschließen. (Die entsprechende Bürde ist im Modul invertiert.)

Das Al41... verfügt über folgende Konfiguration.

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
Al41	Analoger Eingang, 4 Kanäle, 0/420 mA, aktiv/passiv	4 Wörter	-

Tabelle 33: Konfiguration und Datenaufkommen des Al41...

Das Modul Al41... arbeitet als reine Eingangskarte mit zusätzlichem Statusbit für jeden Kanal. Bei einem Anstehen einer Statusmeldung wird das Statusbit des entsprechenden Kanals im Eingangswort (je nach Darstellung Bit 16 oder Bit 1) auf "1" gesetzt. Das Statusbit wird gesetzt, wenn ein Fehler auftritt, der eine Diagnosemeldung auslöst.

	Datenwö	rter														
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MSB	Status	Bitp	osition	des N	1esswe	ertes (021	000 en	tspri	cht 0 k	ois 21	mA)				
LSB	Bitpositio	sition des Messwertes (010000 entspricht 0 bis 10 V)														
Kein Status	1	Bitp	Bitposition des Messwertes (021000 entspricht 0 bis 21 mA)													
MSB	Status	Bitpe	osition	des N	/lessw	ertes (010	000 en	tspri	cht 0 k	ois 10 '	V)				
LSB	Bitpositio	tposition des Messwertes (021000 entspricht 0 bis 21 mA) Status														
Kein Status	-	Bitp	osition	des N	/lesswe	ertes (010	000 en	tspri	cht 0 k	ois 10	V)				

Tabelle 34: Datenmapping des Al41...

Wort	Bedeutung
1	Prozesswert Kanal 1: 0/4 - 20 mA in μA oder 0 - 10 V in μV
2	Prozesswert Kanal 2: 0/4 - 20 mA in μA oder 0 - 10 V in μV
3	Prozesswert Kanal 3: 0/4 - 20 mA in μA oder 0 - 10 V in μV
4	Prozesswert Kanal 4: 0/4 - 20 mA in μA oder 0 - 10 V in μV

Tabelle 35: Datenmapping des Al41...

Parametername	Wert	Beschreibung
Leitungsüberw.	aus/ an	Die Drahtbruch- und Kurzschlussüberwachung wird kanalweise aktiviert oder deaktiviert. Im Kurzschlussfall leuchtet die zugehörige Kanal-LED rot.
Ersatzwertstrategie	min. Wert / max. Wert / letzter gültiger Wert	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt. Der min. Wert ist 0 mA bei 020 mA und 3,6 mA bei 420 mA.
Messbereich	010 V/ 210 V/ 020 mA/ 420 mA	Je nach Parametrierung ist der Messbereich entweder auf 020 mA oder 420 mA bzw. 010 V oder 210 V eingestellt. 0 bis 20 mA → min: 0 mA, max: 22 mA 4 bis 20 mA → min: 3.6 mA, max: 22 mA 0 bis 10 V → min: 0 V, max: 10.5 V 2 bis 10 V → min: 1.8 V, max: 10.5
Filter (PT1)	off/ 0,1 s/ 2,6 s/ 29,2 s	Aktivierung eines Softwarefilters zur Erzeugung eines Mittelwerts

Tabelle 36: Parameter des Al41...

2.11 Al43...

Das analoge Eingabemodul Al43... dient zum Anschluss von Potenziometern in 3- oder 4-Leiter-Technik. Bei der Verwendung von 3-Leiter-Potenziometern muss an den Anschlussklemmen am Modulträger eine Brücke gesetzt werden. Widerstandsmessungen, also die Auswertung von Potenziometern mit 2-Leiter-Anschluss, sind nicht möglich.

Das Modul hat vier Kanäle zur Abfrage von 3-Leiter- oder 4-Leiter-Potenziometern. Die Kanäle sind untereinander und von der Versorgungsspannung sowie dem internen Bus galvanisch getrennt.

Jeder Potenziometer-Eingang wird auf Drahtbruch überwacht. Eine Unterbrechung einer einzelnen Anschlussleitung, sowie die beliebige Kombination von Unterbrechungen der vier Anschlussleitungen eines Eingangs werden sicher erkannt. Eine Kurzschlussüberwachung wird nicht durchgeführt. Nach Eintritt eines Leitungsfehlers wird sofort der parametrierte Ersatzwert ausgegeben und das Invalid-Bit des Ausgabewertes gesetzt. Dieser Zustand bleibt solange erhalten, bis wieder gültige Messwerte vorliegen.

Die Auflösung entspricht 14 Bit. Zur einfacheren Darstellung wird 0...100 % auf den digitalisierten Wert 0...10000 umgesetzt (unabhängig von der Parametrierung des Messbereiches) und zum Hostsystem übertragen.

Das Al43... verfügt über folgende Konfiguration:

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
Al43	Analoger Eingang, 4 K Ω , Potenziometer	2 Byte	-

Tabelle 37: Konfiguration und Datenaufkommen des Al43...

2.11.1 Konfiguration und Datenaufkommen

Das Modul Al43... arbeitet als reine Eingangskarte mit zusätzlichem Statusbit für jeden Kanal. Bei einem Anstehen einer Statusmeldung wird das Statusbit des entsprechenden Kanals im Eingangswort (je nach Darstellung Bit 16 oder Bit 1) auf "1" gesetzt. Das Statusbit wird gesetzt, wenn ein Fehler auftritt, der eine Diagnosemeldung auslöst.

Der analoge Wert von 0...100 % wird als Zahl auf 15 Bit mit 0,1 %/Digit umgerechnet und zum Host-System übertragen. Je nach Wahl des Gateway-Parameters wird das Statusbit linksbündig, rechtsbündig oder gar nicht in die Prozessdaten eingegliedert.

	Datenw	Datenwörter														
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MSB	Status		Bitposition des Messwertes (010000 entspricht 0 bis 100 %)													
LSB			Bitposition des Messwertes (010000 entspricht 0 bis 100 %)									Status				
Kein Status	-			Bitp	ositior	n des M	1esswe	rtes (0	100	00 en	tspricl	nt 0 bi	s 100	%)		

Tabelle 38: Datenmapping des Al43...

Wort	Bedeutung
1	Kanal 1: Prozesswert 0 10000 entspricht 0 100%
2	Kanal 2: Prozesswert 0 10000 entspricht 0 100%
3	Kanal 3: Prozesswert 0 10000 entspricht 0 100%
4	Kanal 4: Prozesswert 0 10000 entspricht 0 100%

Tabelle 39: Datenmapping des Al43...

Parametername	Wert	Beschreibung
Filter (PT1)	aus 0,1 s 2,6 s 29,2 s	Aktivierung eines Softwarefilters zur Erzeugung eines Mittelwerts
Leitungsüberw.	on / off	Die Drahtbruch- und Kurzschlussüberwachung wird kanalweise aktiviert oder deaktiviert. Im Kurzschlussfall leuchtet die zugehörige Kanal-LED rot.
Ersatzwertstrategie	min. Wert / max. Wert / Letzter gültiger Wert	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt.

Tabelle 40: Parameter des Al43...

2.12 AO40...

Das Ausgangsmodul AO40... dient zum Anschluss von eigensicheren analogen Aktuatoren wie Regelventile oder Prozessanzeigen.

Die Auflösung entspricht 13 Bit, das heißt der analoge Wert von 0...21 mA wird als Zahl zwischen 0 und 8191 dargestellt. Zur einfacheren Handhabung arbeitet das Host-System mit dem Wertebereich von 0...21000. Dieser Rohwert wird vom AO40... auf die 13-Bit-Auflösung reduziert.

2.12.1 HART®-Fähigkeit

An das Modul können HART®-fähige Aktuatoren angeschlossen werden. Dadurch kann die Parametrierung mit einem zugelassenen Modem direkt an der Anschlussebene auf dem Modulträger erfolgen. HART®-Fähigkeit bedeutet beim AO40...: es ist möglich, sich direkt an den Klemmen des Transmitters mit einem FSK-Modem anzuschließen. (Die entsprechende Bürde ist im Modul invertiert.)

2.12.2 Konfiguration und Datenaufkommen

Das Modul AO40... arbeitet als reine Ausgangskarte. Der analoge Wert von 0...21 mA wird als Zahl auf 15 Bit mit 1 μ A/Digit umgerechnet und zum Host-System übertragen.

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
AO40	Analoger Ausgang, 4 Kanäle, 0/421 mA	4 Wörter	-

Tabelle 41: Konfiguration und Datenaufkommen des AO40...

Die Belegung der einzelnen Bits des Ausgangswortes z. B. des ersten Kanals ergibt sich aus der folgenden Tabelle:

Daten	Datenwörter														
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bitposi	tion de	s Mess	wertes	(021	000 en	itsprich	nt 0 bis	21 mA))						

Tabelle 42: Datenmapping des AO40...

Wort	Bedeutung
1	Prozesswert Kanal 1: 0/4 – 20 mA in μA
2	Prozesswert Kanal 2: 0/4 – 20 mA in μA
3	Prozesswert Kanal 3: 0/4 – 20 mA in μA
4	Prozesswert Kanal 4: 0/4 – 20 mA in μA

Tabelle 43: Datenmapping AO40...

Parametername	Wert	Beschreibung
Kurzschlussüberw.	an / aus	Die Kurzschlussüberwachung wird kanalweise aktiviert oder deaktiviert. Im Kurzschlussfall leuchtet die zugehörige Kanal- LED rot.
Drahtbruchüberw.	an / aus	Die Drahtbruchüberwachung wird kanalweise aktiviert oder deaktiviert. Im Fall eines Drahtbruchs leuchtet die zugehörige Kanal-LED rot.
Messbereich	020 mA / 420 mA	Je nach Parametrierung ist der Messbereich entweder 020 mA oder 420 mA. 0 bis 20 mA → min: 0 mA, max: 22 mA 4 bis 20 mA → min: 3.6 mA, max: 22 mA 0 bis 10 V → min: 0 V, max: 10.5 V 2 bis 10 V → min: 1.8 V, max: 10.5
Ersatzwertstrategie	Min. value / Max. value / Last valid value	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt. Der max. Wert beträgt 22 mA. Der min. Wert ist 0 mA bei 020 mA und 3,6 mA bei 420 mA.

Tabelle 44: Parameter des AO40...

2.13 AIH40...

Bei den analogen Eingangsmodulen AlH40... des excom®-Systems handelt es sich um eigensichere Module zum Anschluss von bis zu vier Transmittern. Das Eingangsmodul AlH40... dient zum Anschluss von 2-Leiter-Messumformern (aktiver Eingang = speisend / Geber passiv).

HINWEIS

Die Eingänge sind untereinander nicht galvanisch getrennt. Beim Anschluss der Feldgeräte muss berücksichtigt werden, dass alle Eingänge auf einem gemeinsamen Masse-Potenzial liegen.

Die Auflösung entspricht 14 Bit, d. h. der analoge Wert von 0...21 mA wird als Zahl zwischen 0 und 16383 digitalisiert. Zur einfacheren Darstellung wird der digitalisierte Wert in 1 μ A/Digit umgewandelt und zum Host-System übertragen.

2.13.1 HART®-Fähigkeit der Module

An das Modul können HART®-fähige Sensoren angeschlossen werden, die direkt mit dem integrierten HART®-Kontroller kommunizieren. Bis zu 8 HART®-Variablen (maximal 4 je Kanal) können über den zyklischen Nutzdatenverkehr des PROFIBUS-DP gelesen werden. Der bidirektionale Variablenaustausch zwischen Host-System und HART®-Transmitter erfolgt über PROFIBUS-DPV1-Dienste.

2.13.2 Konfiguration und Datenaufkommen

Das Modul AlH40... arbeitet als reine Eingangskarte mit einem zusätzlichen Statusbit für jeden Kanal. Bei einem Anstehen einer Statusmeldung wird das Statusbit des entsprechenden Kanals im Eingangswort (Bit 16) auf "1" gesetzt. Das Statusbit wird gesetzt, wenn ein Fehler auftritt, der eine Diagnosemeldung auslöst. Abhängig von der Konfiguration ergibt sich ein unterschiedliches Datenaufkommen.

Folgende Konfigurationen sind möglich:

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
AIH40	Analoger Eingang, 4 Kanäle, 0/420 mA, aktiv HART®	4 Wörter	-
AIH40 1H	Analoger Eingang, 4 Kanäle, 420 mA, aktiv HART°, 1 zyklische HART°- Variable	6 Wörter	-
AIH40 4H	Analoger Eingang, 4 Kanäle, 420 mA, aktiv HART®, 4 zyklische HART®- Variablen	12 Wörter	-
AIH40 8H	Analoger Eingang, 4 Kanäle, 420 mA, aktiv HART®, 8 zyklische HART®- Variablen	20 Wörter	-

Tabelle 45: Konfiguration und Datenaufkommen des AIH40...

	Datenwörter															
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MSB	Sta- tus	Bitp	Bitposition des Messwertes (020000 entspricht 0 bis 20 mA)													
LSB	Bitpos	ition c	les Me	sswert	es (0	.20000	entsp	richt 0	bis 20	mA)						Status
Kein Status	-	Bitposition des Messwertes (020000 entspricht 0 bis 20 mA)														

Tabelle 46: Datenmapping des AIH40...

HINWEIS

Das Modul liefert im Fehlerfall eine Fehlermeldung über das Statusbit des Datentelegramms, je nach parametriertem Messbereich (0 bis 20 mA, 4 bis 20 mA).

Wort	Bedeutung						
1	Prozesswert Kanal 1: 0/4 – 20 mA i						
2	Prozesswert Kanal 2: 0/4 – 20 mA i						
3	Prozesswert Kanal 3: 0/4 – 20 mA i						
4	Prozesswert Kanal 4: 0/4 – 20 mA i						
5 – 6	1. HART®-Sekundär-Variable	AIH40 1H	31H				
7 – 8	2. HART®-Sekundär-Variable						
9 – 10	3. HART®-Sekundär-Variable	AIH40 4H	4H				
11 – 12	4. HART®-Sekundär-Variable						
13 – 14	5. HART®-Sekundär-Variable		8H				
15 – 16	6. HART®-Sekundär-Variable	AULIAO OLI					
17 – 18	7. HART®-Sekundär-Variable	AIH40 8H					
19 – 20	8. HART®-Sekundär-Variable						

Tabelle 47: Datenmapping

Industri<mark>elle</mark> Au<mark>tomation</mark>

Parametername	Wert	Beschreibung
Kurzschlussüberw.	an /aus	Die Kurzschlussüberwachung wird aktiviert oder deaktiviert.
Drahtbruchüberw.	an /aus	Die Drahtbruchüberwachung wird aktiviert oder deaktiviert.
Ersatzwertstrategie	Min. Wert / Max. Wert / Letzter gültiger Wert	min. Wert: 0 mA or 3,6 mA max. Wert: 21 mA Letzter gültiger Wert: Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt. Der min. Wert ist 0 mA bei 020 mA und 3,6 mA bei 420 mA.
HART®-Status/ Messbereich	020mA / aus / 420mA / ein / 420mA	aus/020 mA: Dead-Zero ohne HART®-Statusabfrage. Drahtbruch und Messbereichsunterschreitung sind inaktiv. Gateway gibt bei Ersatzwertstrategie "min. Wert" 0 an das Host-System.
		aus/420 mA: Live-Zero ohne HART®-Statusabfrage. Drahtbruch und Messbereichsunterschreitung sind aktiv. Gateway gibt bei Ersatzwertstrategie "min. Wert" 3,6 mA an das Host-System.
		ein/420 mA: Live-Zero mit HART®-Statusabfrage (HART®-Diagnose aktiv). Drahtbruch und Messbereichsunterschreitung sind aktiv. Gateway gibt bei Ersatzwertstrategie "min. Wert" 3,6 mA an das Host-System.
		excom® sendet zwei unterschiedliche HART®- Fehlercodes an das PLS: Fehlercode 30 und Fehlercode 31.
		Fehlercode 30: Die HART® Variablen sind gültig, es wird nur eine Information ausgegeben, dass der HART®-Geräte-Status fehlerhaft ist.
		Fehlercode 31: Die HART®-Variablen sind nicht gültig; die HART®-Kommunikation ist fehlerhaft.
Filter (PT1)	aus / 0.1s / 2.6s / 29.2 s	Aktivierung eines Softwarefilters zur Erzeugung eines Mittelwerts
HART®-Variable	Primär / Sekundär 1 / Sekundär 2 / Sekundär 3 / Sekundär 4	Bestimmung der HART®-Sekundärvariablen, die vom HART®-Gerät gelesen wird

Kanal der HART® - Variable	Kanal 1 / Kanal 2 / Kanal 3 / Kanal 4	Definition des AIH40Eingangskanals, an den das HART®-Gerät angeschlossen wird
Ch.1 ch.4 : SV1 SV4	an / aus	Aktivierung der HART®-Sekundärvariablen SV1SV4 des AIH40 Eingangskanals K1 K4, an den das HART® -Gerät angeschlossen wird.

Tabelle 48: Parameter des AIH40...

2.14 AIH41...

Bei den analogen Eingangsmodulen des excom®-Systems handelt es sich um eigensichere Module zum Anschluss von bis zu vier Transmittern. Das Eingangsmodul AlH41... dient zum Anschluss von 4-Leiter-Messumformern (passiver Eingang = nicht speisend / Geber aktiv).

HINWEIS

Die Eingänge sind untereinander nicht galvanisch getrennt. Beim Anschluss der Feldgeräte muss berücksichtigt werden, dass alle Eingänge auf einem gemeinsamen Masse-Potenzial liegen.

Die Auflösung entspricht 14 Bit, d. h. der analoge Wert von 0...21 mA wird als Zahl zwischen 0 und 16383 digitalisiert. Zur einfacheren Darstellung wird der digitalisierte Wert in 1 μ A/Digit umgewandelt und zum Host-System übertragen.

2.14.1 HART®-Fähigkeit der Module

An das Modul können HART®-fähige Sensoren angeschlossen werden, die direkt mit dem integrierten HART®-Kontroller kommunizieren. Bis zu 8 HART®-Variablen (maximal 4 je Kanal) können über den zyklischen Nutzdatenverkehr des PROFIBUS-DP gelesen werden. Der bidirektionale Variablenaustausch zwischen Host-System und HART®-Transmitter erfolgt über PROFIBUS-DPV1-Dienste.

2.14.2 Konfiguration und Datenaufkommen

Das Modul AlH41... arbeitet als reine Eingangskarte mit einem zusätzlichen Statusbit für jeden Kanal. Bei einem Anstehen einer Statusmeldung wird das Statusbit des entsprechenden Kanals im Eingangswort (Bit 16) auf "1" gesetzt. Das Statusbit wird gesetzt, wenn ein Fehler auftritt, der eine Diagnosemeldung auslöst.

Abhängig von der Konfiguration ergibt sich ein unterschiedliches Datenaufkommen.

Folgende Konfigurationen sind möglich:

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
AIH41	Analoger Eingang, 4 Kanäle, 0/420 mA, passiv HART®	4 Wörter	-
AIH41 1H	Analoger Eingang, 4 Kanäle, 420 mA, passiv HART®, 1 zyklische HART®-Variable	6 Wörter	-
AIH41 4H	Analoger Eingang, 4 Kanäle, 420 mA, passiv HART®, 4 zyklische HART®-Variablen	12 Wörter	-
AIH41 8H	Analoger Eingang, 4 Kanäle, 420 mA, passiv HART®, 8 zyklische HART®-Variablen	20 Wörter	-

Tabelle 49: Konfiguration und Datenaufkommen des AIH41...

Die Belegung der einzelnen Bits des Eingangswortes z. B. des ersten Kanals ergibt sich aus der folgenden Tabelle:

	Daten	Datenwörter														
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MSB	Sta- tus	Bitp	Bitposition des Messwertes (020000 entspricht 0 bis 20 mA)													
LSB	Bitpos	ition c	les Me	sswert	es (0	.20000	entsp	richt 0	bis 20	mA)						Status
Kein Status	-	Bitpo	osition	des M	esswei	rtes (0.	2000	0 ents	pricht	0 bis 2	0 mA)					

Tabelle 50: Datenmapping des AIH41...

Hinweis

Das Modul liefert im Fehlerfall eine Fehlermeldung über das Statusbit des Datentelegramms, je nach parametriertem Messbereich (0 bis 20 mA, 4 bis 20 mA).

Wort	Bedeutung										
1	Prozesswert Kanal 1: 0/4 – 20 mA in μA										
2	Prozesswert Kanal 2: 0/4 – 20 mA in μA										
3	Prozesswert Kanal 3: 0/4 – 20 mA in μA										
4	Prozesswert Kanal 4: 0/4 – 20 mA in μA										
5 – 6	1. HART® Sekundär-Variable	AIH41 1H	31H								
7 – 8	2. HART® Sekundär-Variable										
9 – 10	3. HART® Sekundär-Variable	AIH41 4H	4H								
11 – 12	4. HART® Sekundär-Variable										
13 – 14	5. HART® Sekundär-Variable										
15 – 16	6. HART® Sekundär-Variable	AIH41 8H	о⊔								
17 – 18	7. HART® Sekundär-Variable	АП41 ОП	8H								
19 – 20	8. HART® Sekundär-Variable										

Tabelle 51: Datenmapping

Parametername	Wert	Beschreibung					
Leitungsüberwachung	an /aus	Die Kurzschlussüberwachung und Drahtbruch- überwachung wird aktiviert oder deaktiviert.					
Ersatzwertstrategie	Min. Wert / Max. Wert / Letzter gültiger Wert	min. Wert: 0 mA oder 3,6 mA max. Wert: 21 mA Letzter gültiger Wert: Der letzte gültige Messwert Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt.					
HART®-Status / Messbereich	020mA / aus / 420 mA / ein / 420mA	aus/020 mA: Dead-Zero ohne HART®-Statusabfrage. Drahtbruch und Messbereichsunterschreitung sind inaktiv. Gateway gibt bei Ersatzwertstrategie "min. Wert" 0 an das Host- System.					
Filter (PT1)	aus / 0.1 s / 2.6 s / 29.2 s	Aktivierung eines Softwarefilters zur Erzeugung eines Mittelwerts					
HART®-Variable	Primär / Sekundär 1 / Sekundär 2 / Sekundär 3 / Sekundär 4	Bestimmung der HART®-Sekundärvariablen, die vom HART® -Gerät gelesen wird					
Kanal der HART®-Variable	Kanal 1 / Kanal 2 / Kanal 3 / Kanal 4	Definition des AIH40Eingangskanals, an den das HART® -Gerät angeschlossen wird					
Ch.1 ch.4 : SV1 SV4	an / aus	Aktivierung der HART®-Sekundärvariablen SV1SV4 des AlH40 Eingangskanals K1 K4 an den das HART® - Gerät angeschlossen wird.					

Tabelle 52: Parameter des AlH41...

2.15 AOH40...

Das Ausgangsmodul AOH40... dient zum Anschluss von eigensicheren analogen Aktuatoren wie Stellventilen oder Prozessanzeigen.

Hinweis

Die Kanäle sind untereinander nicht galvanisch getrennt. Alle Ausgänge liegen auf einem gemeinsamen Masse-Potenzial.

2.15.1 HART®-Fähigkeit

An das Modul können HART®-fähige Aktuatoren angeschlossen werden. Die Aktuatoren kommunizieren dann direkt mit dem im Modul integrierten HART®-Kontroller.

2.15.2 Konfiguration und Datenaufkommen

Das Modul AOH40... arbeitet als reine Ausgangskarte. Der analoge Wert von 0...21 mA wird als Zahl auf 15 Bit mit 1 μ A/Digit umgerechnet und zum Host-System übertragen. Abhängig von der Konfiguration ergibt sich ein unterschiedliches Datenaufkommen.

Folgende Konfigurationen sind möglich:

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
AOH41	Analoger Eingang, 4 Kanäle, 0/420 mA, passiv HART®	-	4 Wörter
AOH41 1H	Analoger Eingang, 4 Kanäle, 4…20 mA, passiv HART®, 1 zyklische HART®-Variable	2 Wörter	4 Wörter
AOH41 4H	Analoger Eingang, 4 Kanäle, 4…20 mA, passiv HART®, 4 zyklische HART®-Variablen	8 Wörter	4 Wörter
AOH41 8H	Analoger Eingang, 4 Kanäle, 4…20 mA, passiv HART®, 8 zyklische HART®-Variablen	16 Wörter	4 Wörter

Tabelle 53: Konfiguration und Datenaufkommen des AOH40...

Die Belegung der einzelnen Bits des Ausgangswortes z. B. des ersten Kanals ergibt sich aus der folgenden Tabelle:

	Datenwörter															
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MSB	Status	Bitposition des Messwertes (020000 entspricht 0 bis 20mA)														
LSB	Bitposit	ion des	Mess	wertes	(020	0000 e	ntspric	ht 0 bi	s 20 m	nA)						Status
Kein Status	-	- Bitposition des Messwertes (020000 entspricht 0 bis 20 mA)														

Tabelle 54: Datenmapping des AOH40...

Industri<mark>elle</mark> Au<mark>tomation</mark>

Ausgangs- wörter	Eingangs- wörter	Bedeutung	Bedeutung										
1	-	Prozesswert Kanal 1: 0/4 – 20 m	Prozesswert Kanal 1: 0/4 – 20 mA in μA										
2	-	Prozesswert Kanal 2: 0/4 – 20 m	Prozesswert Kanal 2: 0/4 – 20 mA in μA										
3	-	Prozesswert Kanal 3: 0/4 – 20 mA in μA											
4	-	Prozesswert Kanal 4: 0/4 – 20 mA	rozesswert Kanal 4: 0/4 – 20 mA in μA										
	1 - 2	1. HART® Sekundär-Variable	AIH41 1H	31H									
	2 – 3	2. HART® Sekundär-Variable											
	4 – 5	3. HART® Sekundär-Variable	AIH41 4H	4H									
	6 – 7	4. HART® Sekundär-Variable											
	8 – 9	5. HART® Sekundär-Variable											
	10 - 11	6. HART® Sekundär-Variable	AUL41 OLL	011									
	12 – 13	7. HART® Sekundär-Variable	AIH41 8H	8H									
	14 - 15	8. HART® Sekundär-Variable											

Tabelle 55: Datenmapping

Parametername	Wert	Beschreibung
Kurzschlussüberw.	an / aus	Die Kurzschlussüberwachung wird aktiviert oder deaktiviert.
Drahtbruchüberw.	an / aus	Die Drahtbruchüberwachung wird aktiviert oder deaktiviert.
Ersatzwertstrategie	Min. Wert Max. Wert Letzter gültiger Wert	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt. Der max. Wert ist 22 mA, der min. Wert ist 0 mA bei 020 mA und 3,6 mA bei 420 mA.
HART®-Status/ Messbereich	020 mA / aus / 420 mA / an / 420 mA /	aus/020 mA: Dead-Zero ohne HART®-Statusabfrage. Drahtbruch und Messbereichsunterschreitung sind inaktiv. Gateway gibt bei Ersatzwertstrategie "min. Wert" 0 an das Host-System. aus/420 mA: Live-Zero ohne HART®-Statusabfrage. Drahtbruch und Messbereichsunterschreitung sind aktiv. Gateway gibt bei Ersatzwertstrategie "min. Wert" 3,6 mA an das Host-System. ein/420 mA: Live-Zero mit HART®-Statusabfrage (HART®-Diagnose aktiv). Drahtbruch und Messbereichsunterschreitung sind aktiv. Gateway gibt bei Ersatzwertstrategie "min. Wert" 3,6 mA an das Host-System. excom® sendet zwei unterschiedliche HART®-Fehlercodes an das PLS: Fehlercode 30 und Fehlercode 31. Fehlercode 30: Die HART® Variablen sind gültig, es wird nur eine Information ausgegeben, dass der HART®-Gerät-Status fehlerhaft ist. Fehlercode 31: Die HART®-Variablen sind nicht gültig; die HART®-Kommunikation ist fehlerhaft.
HART®-Variable	Primär, Sekundär 1, Sekundär 2, Sekundär 3, Sekundär 4	Auswahl der HART®-Variablen
Kanal der HART® Variable	Kanal 1, Kanal 2, Kanal 3, Kanal 4	Auswahl der zur HART®-Variablen gehörenden Kanalnummer
Kanal 1 Kanal 4 : SV1 SV4	aus / ein	Aktivieren/Deaktivieren der Sekundärvariable SV14 von Kanal 14 HINWEIS: Vermeiden Sie ein Aktivieren von mehr als vier Sekundärvariablen. Nur die ersten vier aktivierten Sekundärvariablen werden vom Modul abgebildet.

Tabelle 56: Parameter des AOH40...

2.16 TI40...

Das Temperaturmodul TI40... dient zum Anschluss von 2-, 3- und 4-Leiter-Widerstandsthermometern der Typen Pt100, Pt200, Pt400, Pt1000, Ni100 und Cu100 sowie zum Anschluss von Thermoelementen der Typen B, E, D, J, K, L, N, R, S, T und U. Das Modul kann auch zur Messung von Kleinstspannungen (-75...+75 mV, -1,2...+1,2 V) und für Widerstandsmessungen genutzt werden $(0...30 \,\Omega, 0...300 \,\Omega, 0...30 \,\Omega)$.

2.16.1 Leitungsabgleich und Kaltstellenkompensation

Ein Leitungsabgleich erhöht die Messgenauigkeit bei Widerstandsthermometern. Die Messung mit Widerstandsthermometern kann durchgeführt werden, wenn der Modultyp **TI40... R** konfiguriert wurde. Der Leitungsabgleich bei 2-Leiter-Temperaturwiderständen erfolgt durch fest vorgegebene Widerstandswerte bei der Parametrierung. Die Kaltstellenkompensation erhöht die Messgenauigkeit bei Thermoelementen. Die Messung mit Thermoelementen kann durchgeführt werden, wenn der Modultyp **TI40... T** konfiguriert wurde. Die Art der Kaltstellenkompensation kann mit dem Parameter für alle Kanäle festgelegt werden.

2.16.2 Konfiguration und Datenaufkommen

Das Modul TI40... arbeitet als reine Eingangskarte mit zusätzlichem Statusbit für jeden Kanal. Bei einem Anstehen einer Statusmeldung wird das Statusbit des entsprechenden Kanals im Eingangswort (Bit 16) auf "1" gesetzt. Das Statusbit wird gesetzt, wenn ein Fehler auftritt, der eine Diagnosemeldung auslöst. Die Auflösung entspricht 16 Bit, d. h. der analoge Wert wird als Zahl zwischen 0 und 65536 dargestellt. Der Temperaturwert wird als Wert in 1/10 Kelvin wiedergegeben. Bei der Umrechnung auf °C muss ein Offset von 273,15 berücksichtigt werden.

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
TI40 R	Analoger Eingang, 4 Kanäle, aktiv, Pt100, Pt200, Pt400, Pt1000, Ni100 und Cu100, 03 kΩ, 2-Draht/3-Draht/4-Draht, HART®	2 Bytes	-
TI40 T	Analoger Eingang, 4 Kanäle, aktiv, Thermoelement Typ B, E, D, J, K, L, N, R, S, T U und mV	2 Bytes	-

Tabelle 57: Konfiguration und Datenaufkommen des TI40...

Die Belegung der einzelnen Bits des Eingangswortes z. B. des ersten Kanals ergibt sich aus der folgenden Tabelle:

	Datenwörter															
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MSB	Status	Bitposition des Messwertes (030000 entspricht 0 bis 3000 K)														
LSB	Bitposition des Messwertes (030000 entspricht 0 bis 3000 K)										Status					
Kein Status	-	Bitpo	osition	des M	esswer	tes (0.	3000	0 ents	oricht	0 bis 3	000 K)	l				

Tabelle 58: Datenmapping

Parametername	Wert	Beschreibung
Sensortyp (Werte für TI40 R)	PT100 (IEC 751) PT200 (IEC 751) PT400 (IEC 751) PT1000 (IEC 751) PT1000 (JIS) PT1000 (JIS) PT1000 (SAMA) PT1000 (SAMA) PT1000 (Ghost) NI100 CU100 030 Ω 0300 Ω 03 kΩ	Einstellen des Sensortyps.
Sensortyp (Werte für TI40 T)	Type B Type E Type J Type K Type L Type N Type R Type S Type T Type U Type C Type D Type L (Ghost) U [-75+75mV] U [-1.2+1.2V]	Einstellen des Sensortyps.
Anschluss (nur für TI40 R)	2-Leiter, 07.5 Ω	Anschlusstechnik (2-Leiter). Der Leitungswiderstand beträgt zwischen 0 und 7,5 Ω .
	2-Leiter, 815 Ω	Anschlusstechnik (2-Leiter). Der Leitungswiderstand beträgt zwischen 8 und 15 Ω .
	3-Leiter 4-Leiter	Anschlusstechnik (3-Leiter oder 4-Leiter).
Vergleichsstelle (nur für TI40 T)	keine intern Pt100 an Klemme extern (fest)	Art der Kaltstellenkompensation
Filter (PT1)	aus 0,1 s 2,6 s 29,2 s	Aktivierung eines Softwarefilters zur Erzeugung eines Mittelwerts
Kurzschlussüberwachung (nur für TI40 R)	aus / an	Die Kurzschlussüberwachung wird kanalweise aktiviert oder deaktiviert. Im Kurzschlussfall leuchtet die zugehörige Kanal-LED rot.
Drahtbruchüberwachung	aus / an	Die Drahtbruchüberwachung wird kanalweise aktiviert oder deaktiviert. Im Fall eines Drahtbruch leuchtet die zugehörige Kanal-LED rot.

Industri<mark>elle</mark> Au<mark>tomation</mark>

Ersatzwertstrategie	min. Wert max. Wert letzter gültiger Wert	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt.
Vergleichs- temperatur	0 70 C°	Angabe der Vergleichstemperatur mit externem Thermoelement ermittelt

Tabelle 59: Parameter des TI40...

2.17 TI41...

Das Temperaturmodul TI41... dient zum Anschluss von 2-, 3- und 4-Leiter-Temperaturwiderständen der Typen Pt100, Ni100 und Cu100.

2.17.1 Leitungsabgleich und Kaltstellenkompensation

Ein Leitungsabgleich erhöht die Messgenauigkeit bei Widerstandsthermometern. Der Leitungsabgleich bei 2-Leiter-Temperaturwiderständen erfolgt durch fest vorgegebene Widerstandswerte bei der Parametrierung.

2.17.2 Konfiguration und Datenaufkommen

Das Modul TI41... arbeitet als reine Eingangskarte mit zusätzlichem Statusbit für jeden Kanal. Bei einem Anstehen einer Statusmeldung wird das Statusbit des entsprechenden Kanals im Eingangswort (Bit 16) auf "1" gesetzt. Das Statusbit wird gesetzt, wenn ein Fehler auftritt, der eine Diagnosemeldung auslöst. Die Auflösung entspricht 14 Bit, d. h. der analoge Wert wird als Zahl zwischen 0 und 16383 dargestellt. Der Temperaturwert wird als Wert in 1/10 Kelvin wiedergegeben. Bei der Umrechnung auf °C muss ein Offset von 273,15 berücksichtigt werden.

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten
TI41	Analoger Eingang, 4 Kanäle, aktiv, Pt100, Ni100 und Cu100, 2-Draht/3-Draht/4-Draht	8 Bytes	1

Tabelle 60: Konfiguration und Datenaufkommen des TI41...

Die Belegung der einzelnen Bits des Eingangswortes z. B. des ersten Kanals ergibt sich aus der folgenden Tabelle:

	Datenw	Datenwörter														
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MSB	Status	Bitpo	osition	des M	esswei	tes (0.	3000	0 ents	pricht	0 bis 3	000 K)					
LSB	Bitpositi	ion des	s Mess	wertes	(030	0000 e	ntsprio	ht 0 bi	s 3000) K)						Status
Kein Status	-	Bitpo	osition	des M	esswei	tes (0.	3000	0 ents	pricht	0 bis 3	000 K)	l				•

Tabelle 61: Datenmapping

Parameter	Wert	Beschreibung				
Sensortyp	Pt100 (IEC) Pt100 (JIS) Pt100 (SAMA) Ni100 Pt100 (GOST) reserviert CU100 reserviert	Einstellen des Sensortyps.				
Anschluss	2-Leiter, 07.5 Ω	Anschlusstechnik (2-Leiter). Der Leitungswiderstand beträgt zwischen 0 und 7,5 Ω .				
	2-Leiter, 815 Ω	Anschlusstechnik (2-Leiter). Der Leitungswiderstand beträgt zwischen 8 und 15 Ω .				
	3-Leiter 4-Leiter	Anschlusstechnik (3-Leiter oder 4-Leiter).				
Filter (PT1)	aus 0,1 s 2,6 s 29,2 s	Aktivierung eines Softwarefilters zur Erzeugung eines Mittelwerts				
Kurzschlussüberwachung	aus / an	Die Kurzschlussüberwachung wird kanalweise aktiviert oder deaktiviert. Im Kurzschlussfall leuchtet die zugehörige Kanal-LED rot.				
Drahtbruchüberwachung	aus / an	Die Drahtbruchüberwachung wird kanalweise aktiviert oder deaktiviert. Im Fall eines Drahtbruchs leuchtet die zugehörige Kanal-LED rot.				
Ersatzwertstrategie	min. Wert max. Wert letzter gültiger Wert	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt.				

Tabelle 62: Parameter des TI41...

2.18 DO60-R...

Das sechskanalige Relaismodul DO60R... dient zum Anschluss von Aktuatoren wie Ventile oder Anzeigeelemente. Die Ausgänge sind als spannungsfreie Relaiskontakte für höhere Schaltleistungen ausgelegt und als Schließer oder Öffner konfigurierbar:

2 x Wechsler (Kanal 1 und 2) und 4 x Schließer (Kanal 3 bis 6)

HINWEIS

Alle Kanäle sind untereinander galvanisch getrennt.

Über den PROFIBUS-DP-Master sind die Kanäle 3/4 und 5/6 jeweils als Wechsler schaltbar. Hierfür ist lediglich eine externe Brücke an den Klemmen erforderlich. Je Kanal kann ein Aktuator angeschlossen werden.

2.18.1 Konfiguration und Datenaufkommen

Das Ausgangsmodul DO60R... arbeitet als reine Ausgangskarte. Im Gegensatz zu den anderen Digitalkarten verfügt das Modul nicht über ein zusätzliches Statusbit. Die 6 Kanäle belegen Bit 0...5 des Ausgangsbytes. Die Bits 6...7 werden nicht belegt.

Variante	Beschreibung	Eingangs- daten	Ausgangs- daten	
DO60-R	Digitaler Ausgang, 6 Kanäle, passiv	ī	1 Byte	

Tabelle 63: Konfiguration und Datenaufkommen des DO60-R...

Datenbyt	Datenbyte											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
-	-	Kanal 6	Kanal 5	Kanal 4	Kanal 3	Kanal 2	Kanal 1					

Tabelle 63: Datenmapping des DO60-R...

Parametername	Wert	Beschreibung
Ersatzwertstrategie	min. Wert / max. Wert / letzter gültiger Wert	Je nach Parametrierung wird der minimale, der maximale oder der zuletzt gültige Wert gesetzt.
Polarität	normal / invertiert	Aktivieren oder Deaktivieren der Invertierung des Signals
Relaiskonfiguration Kanal 3 + 4 bzw. 5+6 2 x Schließer 1 x Wechsler		Die Ausgänge sind als spannungsfreie Relaiskontakte als Schließer oder Wechsler konfigurierbar

Tabelle 64: Parameter des DO60-R...

3 Beispielintegration von excom® in DeltaV

Im ersten Schritt wird ein neues PROFIBUS-Gerät im DeltaV-Explorer hinzugefügt. Als Voraussetzung dafür müssen die GSD-Dateien installiert sein.

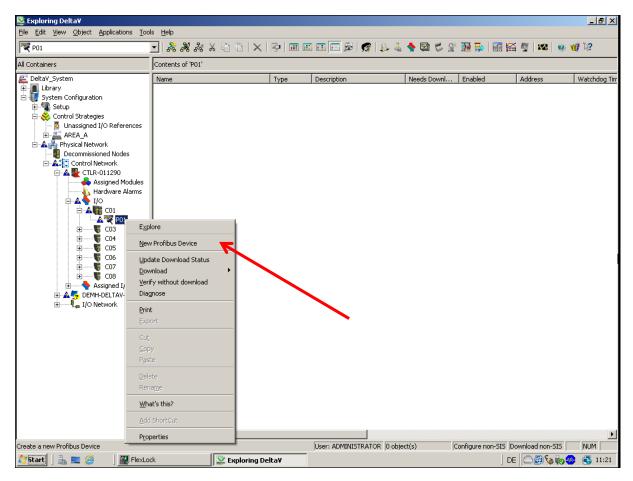


Abbildung 12: Schritt 1

Im zweiten Schritt wird ein passendes TURCK-Device ausgewählt.

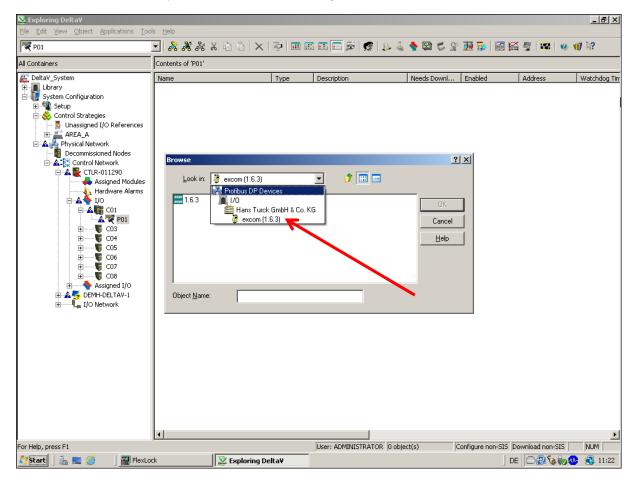


Abbildung 13: Schritt 2

In Schritt 3 wird das Gerät mit einem eindeutigen Namen versehen.

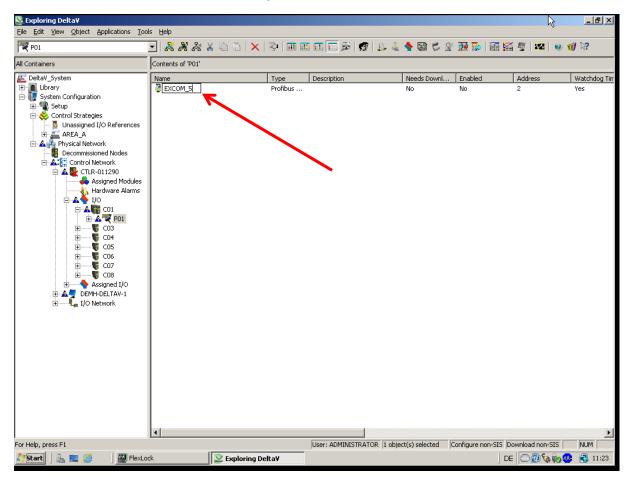


Abbildung 14: Schritt 3

Nun werden die Module hinzugefügt.

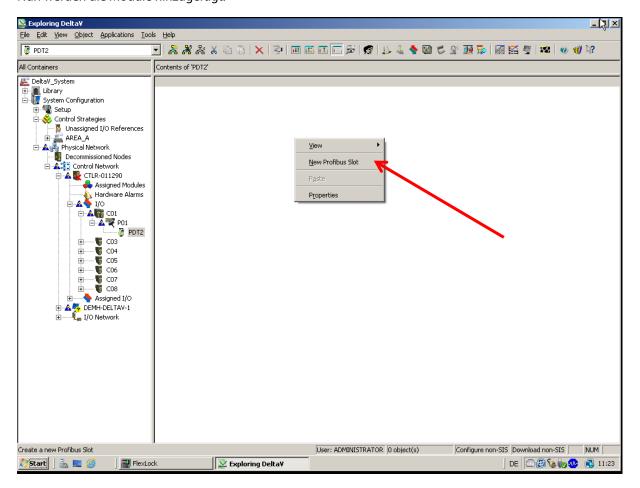


Abbildung 15: Schritt 4

In Schritt 5 und Schritt 6 werden die Geräte in gesteckter Reihenfolge im Modulträger hinzugefügt.

i

Es darf dabei nur ein Gateway hinzugefügt werden.

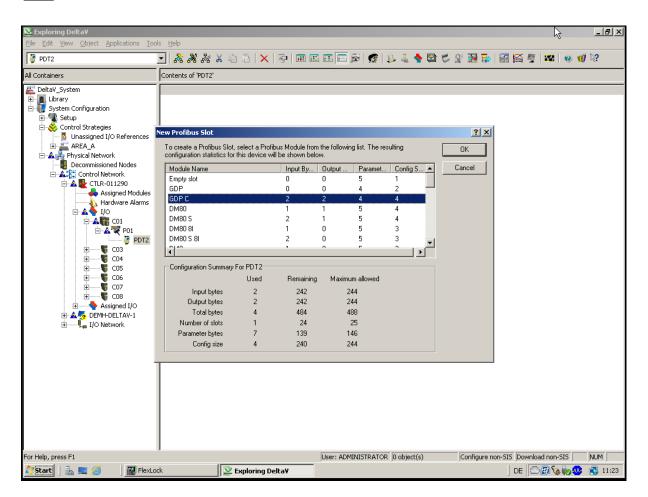


Abbildung 16: Schritt 5

Industri<mark>elle</mark> Automation

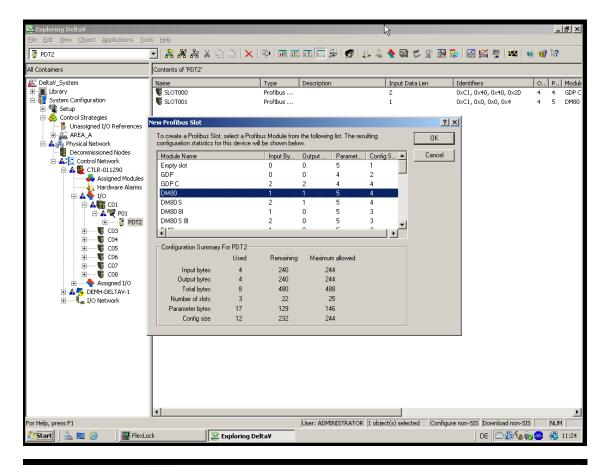


Abbildung 17: Schritt 6

Nun werden die Modulparameter angepasst.

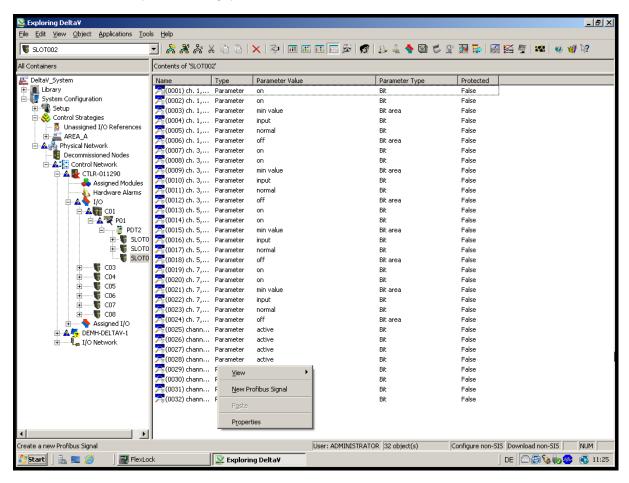


Abbildung 18: Schritt 7

Definition eines PROFIBUS-Signals für die einzelnen Module.

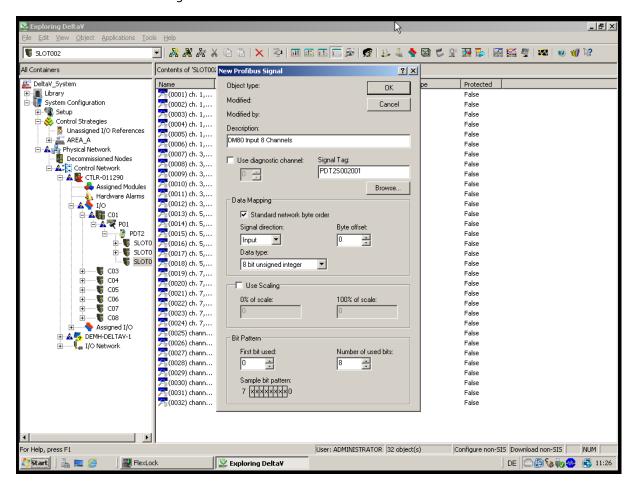


Abbildung 19: Schritt 8

Hier wird der Signalbaum angepasst.

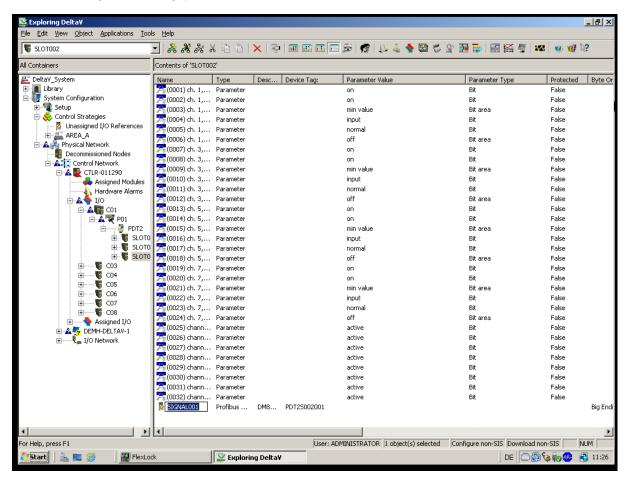


Abbildung 20: Schritt 9

Abbildung 21 zeigt die komplette Konfiguration.

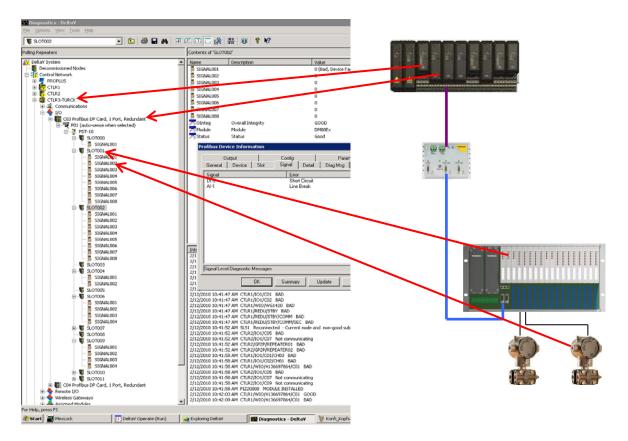


Abbildung 21: Komplette Konfiguration

4 Redundanzstrategien bei PROFIBUS-DP

4.1 Gatewayredundanz (einfache Linienredundanz)

Mit dem Einsatz von zwei Gateways (und zwei Busleitungen) ist auch beim Ausfall eines Gateways oder einer Busleitung eine Kommunikation gewährleistet. Fällt ein Gateway aus, so wird auf das andere umgeschaltet.

HINWEIS

Beachten Sie beim Austausch eines defekten Gateways, dass das neue Gerät in jedem Fall denselben Firmware- und Hardwarestand haben muss wie das redundante Gateway!

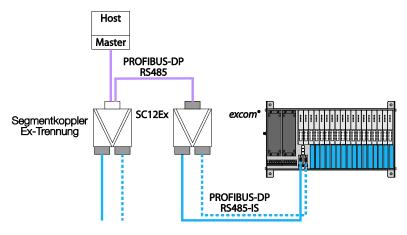


Abbildung 22: Gatewayredundanz

Die Gateway-Redundanz ist eine einfache Redundanzfunktion des excom®-Systems, die im Master weder parametriert noch sichtbar ist. Die Umschaltung wird durch die Gateways eigenständig durchgeführt.

4.2 Beispiel für die Gatewayredundanz

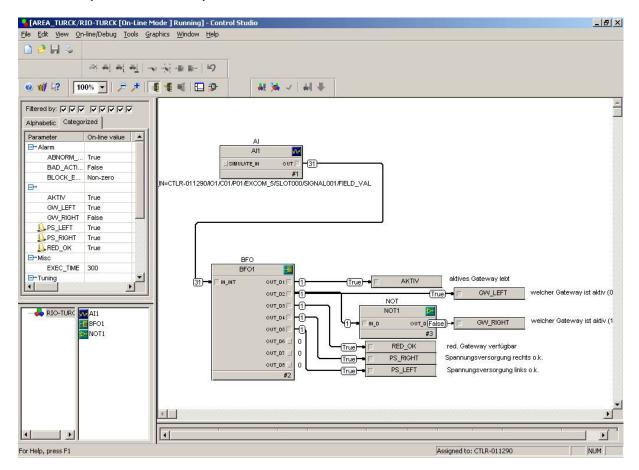


Abbildung 23: Gatewayredundanz

4.3 Linienredundanz

Linienredundanz erhöht die Verfügbarkeit bei geringst möglichem Aufwand. Linienredundanz lässt sich mit nur einem aktiven Master realisieren. Ein zweiter, redundanter Master kann zum Zweck des Hot-stand-bys installiert werden. Bei der Linienredundanz wird die Buslinie nahe am Master in zwei redundante Buslinien aufgeteilt. Dies wird durch den Einsatz von zwei Segmentkopplern oder einem SC12Ex realisiert. Die excom®-Station muss zu diesem Zweck zwei Gateways enthalten. Jedes Gateway wird dann an eine der beiden redundanten Buslinien gekoppelt. Eines der beiden Gateways ist aktiv geschaltet, das andere befindet sich im Stand-by.

HINWEIS

Beachten Sie beim Austausch eines defekten Gateways, dass das neue Gerät in jedem Fall denselben Firmware- und Hardwarestand haben muss, wie das redundante Gateway!

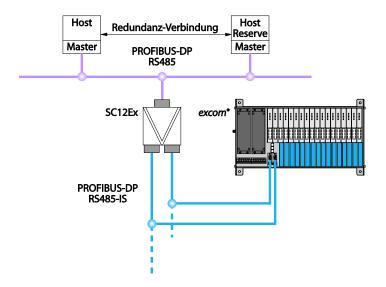


Abbildung 24: Linienredundanz

Die Linienredundanz wird im Master parametriert. Das Stand-by-Gateway antwortet auf FDL-Telegramme und ist dadurch für den Master sichtbar. Die Umschaltung kann sowohl durch den Master initiiert werden als auch eigenständig durch die Gateways.

Durch die Aktivierung des Parameters Adress Offset ("ein") und die Eingabe eines "Adress Offset Wertes" ungleich "0" erhält das redundante Gateway eine excom-interne virtuelle Busadresse (Basis Adresse der excom®-Station + "Adress Offset Wert".

Das redundante Gateway reagiert aufgrund der eingestellten virtuellen Busadresse auf das Polling aller nicht konfigurierten Slaves des Netzwerks durch den PROFIBUS-Master und sendet eine Empfangsquittung.

Anhand dieser Empfangsquittung wird die Kommunikationsbereitschaft des redundanten Gateways überprüft.

4.3.1 Parametrierung von excom[®] bei Linienredundanz

Die Redundanz wird bei excom® über die Gateway-Parameter "Redundanz-Modus", "Adress Offset" und "Adress Offset Wert" eingestellt.

4.3.2 Redundanzmodus "aus"

Ist der Parameter "Redundanz-Modus" deaktiviert ("aus"), arbeitet excom® in Linienredundanz ohne Überwachung. Wird die Kommunikation zwischen dem Master und dem primären Gateway unterbrochen, übernimmt das redundante Gateway der excom®-Station die Kommunikation (Gateway-Redundanz).

HINWEIS

Beim Umschalten findet keine Überprüfung der Kommunikationsfähigkeit des redundanten Gateways statt. Es wird keine zusätzliche Diagnose generiert.

Industrielle Automation

Name	Туре	Parameter Value	Parameter Type	Protected
(0001) grid frequency	Parameter	50Hz	Bit area	False
🌊 (0002) analog data format	Parameter	status MSB	Bit area	False
🌊 (0003) backplane	Parameter	MT18 (16 I/O modules)	Bit area	False
(0004) redundancy mode	Parameter	off	Bit area	False
(0005) power supply	Parameter	redundant	Bit	False
🌊 (0006) cyclic data	Parameter	select 0	Bit area	False
(0007) HCIR active	Parameter	off	Bit	False
(0008) HCIR WCBC factor	Parameter	base x 1	Bit	False
(0009) HCIR WCBC base (x 100ms)	Parameter	5	Bit area	False
(0010) address offset	Parameter	disable	Bit	False
(0011) address offset value	Parameter	0	Bit area	False
(0012) CAN redundancy	Parameter	on	Bit	False
₹(0013) SF2	Parameter	select 0	Bit area	False
7 (0014) SF3	Parameter	select 0	Bit	False

Abbildung 25: Redundanzparameter "Linienredundanz – aus"

4.3.3 Redundanzmodus "Linienredundanz"

Ist der Parameter "Redundanz-Modus" auf "Linienredundanz" eingestellt, arbeitet excom® ebenfalls in Linienredundanz. Wird die Kommunikation zwischen dem Master und dem primären Gateway unterbrochen, übernimmt das redundante Gateway der excom®-Station die Kommunikation. In diesem Fall wird allerdings eine Überprüfung der Kommunikationsfähigkeit des redundanten Gateways durchgeführt. Durch die Aktivierung des Parameters "Adress Offset" ("ein") und die Eingabe eines "Adress Offset Wertes" ungleich "0" erhält das redundante Gateway eine excom®-interne virtuelle Busadresse (Basis-Adresse der excom®-Station + "Adress Offset Wert"). Das redundante Gateway reagiert aufgrund der eingestellten virtuellen Busadresse auf das Polling aller nicht konfigurierten Slaves des Netzwerkes durch den PROFIBUS-Master und sendet eine Empfangsquittung. Anhand dieser Empfangsquittung wird die Kommunikationsbereitschaft des redundanten Gateways überprüft.

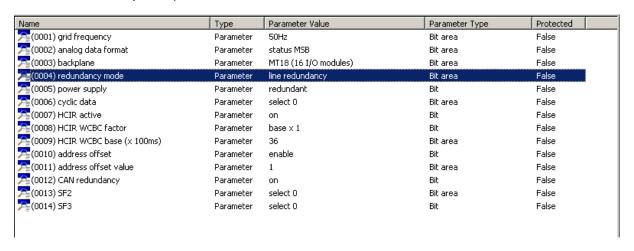


Abbildung 26: Redundanzparameter – Linienredundanz

4.3.4 Redundanzstatus bei "Linienredundanz"

Die verschiedenen Redundanzstatus, d. h. normaler Betrieb oder Fehlerfall, werden über die Statusdiagnose, die "Kanalspezifische Diagnose" (Slot 0, Kanal 0) und die LEDs der beiden Gateways angezeigt.

Folgende Ereignisse können auftreten:

Aktives Gateway	Passives Gateway	Fehlercode (aktives Gateway)	Beschreibung
PRIO-LED aus	PRIO-LED blinkt kurz	27	R_SWITCH_OVER: Die Redundanzumschaltung hat stattgefunden (wird nach 10 s zurückgesetzt).
PRIO-LED blinkt	-	28	R_GW_MISSING: Das redundante Gateway fehlt.
PRIO-LED blinkt	PDP-LED rot	29	R_NOT_READY: Das redundante Gateway ist nicht bereit.
PRIO-LED blinkt	PDP-LED rot	30	R_GW_ERROR: Das redundante Gateway ist zwar vorhanden, es liegt aber ein Fehler vor.
PRIO-LED blinkt	PDP-LED rot	31	R_NO_DP: Das redundante Gateway hat keine PROFIBUS- Kommunikation Gründe dafür können beispiels- weise sein: HSA (Highest Station Address) zu klein, physikalische Verbindung defekt usw.

Tabelle 65: Redundanzstatus

4.4 Redundanzüberwachung

Das Gateway verfügt über ein Eingabewort sowie ein Ausgabewort zur Überwachung der Redundanz, wenn es im Steuerungssystem als "GDP... C" konfiguriert wird. Das Eingabewort beschreibt den aktuellen Zustand der Gateways; das Ausgabewort dient zum Erzwingen einer Redundanzumschaltung. Diese Information kann genutzt werden, um mit Hilfe einer selbst definierten Logik im Steuerungssystem die Redundanz zu überwachen. Die Logik kann beispielsweise so definiert werden, dass bei einer beabsichtigten oder unbeabsichtigten Umschaltung die Prozesswerte der Eingänge und/oder Ausgänge der E/A-Module für einen definierten Zeitraum eingefroren werden.

4.5 Eingabewort zum aktuellen Zustand der Gateways

Im Eingabewort wird der Zustand der jeweiligen Gateways hinterlegt. Ist die eine Linienredundanz konfiguriert, sendet nur das aktive Gateway dessen Zustand. Bei der Systemredundanz senden beide Gateways ihren Zustand zu den jeweiligen PROFIBUS-Mastern.

	Eingangswort														
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Nicht	genutz	t									Status	Status	Red GDP Status	Slot	aktiv/ passiv

Bit	Bit	Bedeutung	Beschreibung
0	1		
0	0	Gateway auf dem rechten Slot ist passiv	Bit 0: Gibt den Status des aktiven Gateways an. 0 = passiv 1 = aktiv Nur bei Systemredundanz: Bei der einfachen Systemredundanz wird
0	1	Gateway auf dem rechten Slot ist aktiv	dieses Bit immer auf 1 gesetzt, wenn das aktive Gateway Daten mit dem Master austauscht.
1	0	Gateway auf dem linken Slot ist passiv	Bit 1: Gibt den Slot des aktiven Gateways an 0 = Gateway ist auf dem rechten Slot
1	1	Gateway auf dem linken Slot ist aktiv	1 = Gateway ist auf dem linken Slot

Bit 2	Bedeutung	Beschreibung
0	Redundantes Gateway nicht verfügbar	Zeigt den Status des redundanten Gateways an.
1	Redundantes Gateway verfügbar	0 = Redundantes Gateway nicht verfügbar

Bit 3	Bedeutung	Beschreibung
0	Rechtes Netzteil bzw. Versorgungsmodul ausgefallen	Zeigt den Status des rechten Netzteils bzw. Versorgungsmoduls 0: Rechtes Netzteil bzw. Versorgungsmodul ausgefallen
1	Rechtes Netzteil bzw. Versorgungsmodul ok	1: Rechtes Netzteil bzw. Versorgungsmodul o.k. Wird der Gateway-Parameter für die redundante Stromversorgung nicht gesetzt, wird dieses Bit immer auf 1 gesetzt.

Bit 4	Bedeutung	Beschreibung
0	Linkes Netzteil bzw. Versorgungsmodul ausgefallen	Zeigt den Status des linken Netzteils bzw. Versorgungsmoduls 0: Linkes Netzteil bzw. Versorgungsmodul ausgefallen 1: Linkes Netzteil bzw. Versorgungsmodul ok Wird der Gateway-Parameter für die redundante Stromversorgung nicht gesetzt, wird dieses Bit immer auf 1 gesetzt.

4.6 Ausgabewort zum Erzwingen einer Redundanzumschaltung

Bit 0-2 steuern die Redundanzumschaltung. Die Redundanzumschaltung reagiert nur, wenn Bit 0 und 1 den Zustand 11 -> 01 oder 11 -> 10 wechselt. Bit 2 bestimmt dabei die Reaktion auf einen Flankenwechsel. Im Fall "Bit 2 = 0" wird unabhängig von der Position der Gateways eine Redundanzumschaltung initiiert. Im Fall "Bit 2 = 1" wird gezielt das linke oder rechte Gateway aktiviert. Bit 2 kann statisch verwendet werden. Es wird bei jedem Flankenwechsel neu ausgewertet.

Aus	gangsw	ort													
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					Nicht b	enutzt							Kontroll - bits	Steuerbi Flankenw	

Bit 2	Bit 1 Bit 0	Podoutuna
DIL 2	Flankenwechsel	Bedeutung
0	11→01	Empfänger ist das passive Gateway. Das passive Gateway fordert vom aktiven Gateway die Kontrolle und wird aktiv.
0	11→10	Empfänger ist das aktive Gateway. Das aktive Gateway gibt die Kontrolle an das passive Gateway ab und wird passiv.
1	11→01	Empfänger ist das linke Gateway. Das linke Gateway fordert vom rechten die Kontrolle und wird aktiv.
1	11→10	Empfänger ist das rechte Gateway. Das rechte Gateway fordert vom linken die Kontrolle und wird aktiv.

5 Umkonfiguration im laufenden Betrieb (HCIR/CIR)

Manchmal ist es notwendig eine bestehende Sollkonfiguration umzukonfigurieren. Dies sollte nach Möglichkeit ohne unerwünschte Beeinträchtigung der angeschlossenen Sensorik und Aktorik durchgeführt werden. Die Umkonfiguration im laufenden Betrieb wird als HCIR bezeichnet (HCIR = Hot Configuration in Run). Dabei können nicht betroffene I/O-Module weiterhin ihre Funktion uneingeschränkt fortführen.

excom® generiert dazu ein neues "Check_Cfg Telegram" im laufenden Betrieb. Der Betriebszustand "Data Exchange" wird gemäß PROFIBUS-Definition für eine kurze Zeit verlassen, solange bis der Zustand "Data Exchange" wieder vorliegt. Während dieses Telegrammausfalls halten die Ausgänge ihren letzten gültigen Wert. Es muss aber vorausgesetzt werden, dass die Umkonfiguration ordnungsgemäß abgeschlossen wird, ansonsten nehmen die Ausgänge ihre parametrierten Ersatzwerte ein. Damit ist das excom®-System uneingeschränkt HCIR-fähig.

HINWEIS

Mit dem Remote-I/O-System excom® ist HCIR natürlich nur dann möglich, wenn auch der Master HCIR unterstützt. Das DeltaV-System ist für HCIR geeignet. Um zu vermeiden, dass während der Umkonfiguration Fehler oder Alarme auftreten, müssen auch die Eingänge kurzzeitig gehalten werden. Das DeltaV-System verfügt über diese Eigenschaft.

5.1 Konfiguration (Module hinzufügen)

Zur Konfiguration bei PROFIBUS wird der azyklische Datenaustausches verwendet, der wiederum im Allgemeinen für ein neues I/O-Mapping im PROFIBUS-Master sorgt. Diese Unterbrechung in der Datenübertragung zur Konfiguration ist aber so ausgeführt, dass die Anlagefunktion nicht gestört wird. Natürlich muss auch der PROFIBUS-Master HCIR-fähig sein. Die zur Beschreibung der erforderlichen Parameter werden in der GSD-Datei bereitgestellt.

5.2 HCIR bei excom®

HCIR wird bei excom® durch den Masterbefehl "leave-master" gestartet. Dabei wird im "prm_command Telegramm" das Bit "UNLOCK" gesetzt. Sind die entsprechenden Parameter für HCIR im Gateway GDP...angewählt, führt der Befehl "leave-master" zum Starten des HCIR-Timers. Die Ausgänge verbleiben im Zustand "last valid value" und gehen erst dann in "fail save" wenn nach Ablauf des HCIR-Timers keine Umkonfiguration stattfinden konnte. Ansonsten wird excom® mit der neuen Konfiguration aber stoßfrei wieder anlaufen.

Unabhängig, ob die neu konfigurierten Module physikalisch bereits vorhanden sind oder nicht. Wie bei der Linienredundanz erhält der PROFIBUS-Master für die Zeit bis zum Wiederanlauf keine Eingabedaten von excom®. Dieser kurzzeitige Verlust der Eingabedaten muss von der Masterapplikation abgefangen werden.

Die HCIR-Parameter bedeuten im Einzelnen:

HCIR aktiv	aus / ein	Freischaltung der Online-Konfiguration	
		HINWEIS: Dieses Bit muss durch den Master gesetzt werden	
		bevor die HCIR-Sequenz startet.	
HCIR WCBC Faktor	Basis x 1 /	Faktor zur Generierung der maximalen Umschaltzeit zwischen	
	Basis x16	alter und neuer Konfiguration. Die Konfigurationsänderung	
		kann durch Modultausch (Hot Swapping) und	
		Konfigurationserweiterung (Configuration in Run) im laufende	
		Betrieb erfolgen. Während der Umschaltzeit werden die	
		Ausgänge auf dem aktuellen Wert "gehalten". Die eingestellte	
		Basis "HCIR WCBC Basis" wird mit diesem Faktor multipliziert.	
HCIR WCBC Basis	063	Legt die Basis der Umschaltzeit fest. Unterstützt der PROFIBUS-	
(x 100 ms)	(Vorgabewert: 5)	Master HCIR wird dieser Parameter automatisch gesetzt.	

6 Diagnosen bei excom®

6.1 Gateway GDP...

6.1.1 PROFIBUS-Fehler

LED	Verhalten	Mögliche Fehlerursache
Status	grün	Keine Kommunikation mit dem PROFIBUS
CAN	gelb	excom®-Adresse falsch
PDP	rot	Doppelvergabe an PROFIBUS-Teilnehmern
PRIO (Redundanzstatus)	gelb	Busabschluss nicht vorhanden
Config	aus	Verkabelung defekt

6.1.2 Keine interne Kommunikation

LED	Verhalten	Mögliche Fehlerursache
Status	grün	
CAN	rot	Keine interne Kommunikation
PDP	gelb	Keine Module gesteckt
PRIO	gelb	Modul verursacht eine Störung auf dem internen
(Redundanzstatus)		Kommunikationsbus
Config	rot blinkend	

6.1.3 Konfigurationsfehler

LED	Verhalten	Mögliche Fehlerursache
Status	grün	
CAN	gelb	Keine Module gesteckt
PDP	gelb	Modul an falscher Position
PRIO (Redundanzstatus)	gelb	Module stecken nicht richtig im Rack
(Neddindanizstatus)		Module nicht parametriert
Config	rot blinkend	

6.2 Digitalmodule

LED	Verhalten	Bedeutung
Status	aus	keine Spannungsversorgung
	rot blinkend	Modul ist nicht für diesen Steckplatz konfiguriert.
	grün	einwandfreier Betrieb
	grün blinkend	Das Modul wurde noch nicht vom Gateway konfiguriert und wartet auf Konfigurationsdaten.
	grün blinkend schnell	Modul ist konfiguriert, der Master liefert aber keine Ausgabedaten.
Kanal	aus	Kanal nicht aktiv (nicht geschaltet)
	gelb	Kanal geschaltet/aktiv.
	rot	Kanalfehler (Drahtbruch, Kurzschluss) – Kanaldiagnose liegt vor.

6.3 Analogmodule

LED	Verhalten	Bedeutung
Status	aus	keine Spannungsversorgung
	rot blinkend	Modul ist nicht für diesen Steckplatz konfiguriert.
	grün	einwandfreier Betrieb
	grün blinkend	Das Modul wurde noch nicht vom Gateway konfiguriert und wartet auf Konfigurationsdaten.
Kanal	aus	kein Kanalfehler
	rot	Kanalfehler (Drahtbruch, Kurzschluss) – Kanaldiagnose liegt vor.

7 Fehlercodes bei excom®

7.1 Standard-Fehlercodes

Code	Bedeutung
0	reserviert
1	Kurzschluss
2	Unterspannung
3	Überspannung
4	Überlast
5	Übertemperatur
6	Drahtbruch
7	Oberer Grenzwert überschritten + Überlauf (U < 1,8 V, I < 3,6 mA)
8	Unterer Grenzwert unterschritten + Unterlauf (U > 10,5 V, I > 21 mA)
9	Fehler
1015	reserviert
1631	Herstellerspezifisch (excom®)

7.2 Herstellerspezifische Gateway-Fehlercodes

Code	Bedeutung
16	ROM-Fehler
17	RAM-Fehler
18	EEPROM-Fehler
19	Hochlauf nach Kaltstart
20	Unterschiedliche Konfiguration (bei Redundanz)
21	Unterschiedliche Firmware (bei Redundanz)
22	Fehlfunktion des internen Busses (CAN-Fehler)
23	Fehlfunktion des internen Busses (passiv) (CAN-Fehler)
24	Fehler im Netzteil bzw. Versorgungsmodul 1
25	Fehler im Netzteil bzw. Versorgungsmodul 2
26	Hochlauf nach Watchdog-Reset
27	Redundanzumschaltung hat stattgefunden
28	Redundantes Gateway fehlt
29	Redundantes Gateway nicht bereit
30	Redundantes Gateway hat einen Fehler
31	Redundantes Gateway hat keine PROFIBUS-DP Kommunikation

7.3 Herstellerspezifische Fehlercodes für die excom®-I/O-Module

Code	Bedeutung
19	Modultyp (Soll-Konfiguration) nicht bekannt
20	Modultyp (Soll-Konfiguration) nicht bekannt
21	Reserviert
22	Modultyp (Soll-Konfiguration) nicht bekannt
23 29	Reserviert
30	HART®-Status-Fehler
31	HART®-Kommunikations-Fehler

Your Global Automation Partner!

WORLDWIDE HEADQUARTERS

Hans Turck GmbH & Co. KG Witzlebenstr. 7 45472 Muelheim an der Ruhr Germany Tel. +49 208 4952-0 Fax +49 208 4952-264 E-Mail more@turck.com Internet www.turck.com

Irrtümer und Änderungen vorbehalten